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Recent calculations have suggested that it may be feasible to produce antihydrogen molecular ions
in the near future [Zammit et al, Phys. Rev. A 100, 042709 (2019)]. The proposed scheme would
laser excite cold antihydrogen H(1s) atoms held in a magnetic field minimum trap, and the resulting

metastable H(2s) atoms would interact to form the antihydrogen molecular ion, H
−
2 , by associative

ionization. Estimates for the efficiencies of the proposed formation and depletion processes relied
on low energy extrapolations of rate coefficients that were computed at thermal energies. In the
present work, we provide quantum calculations of the rate coefficients for associative ionization and
for the competing Penning ionization process, which would deplete the population of trapped H.
In contrast to the low energy extrapolations, it is found that Penning ionization is the dominant
ionization process at all temperatures, and the relative efficiency of associative ionization is within
a factor of three at the low temperatures required by the experimental scheme. Rate constants for
single and double excitation transfer are computed as possible loss mechanisms, and all rates are
found to be small compared to spin-flip decay rates from Stark-induced mixing with H(2p) states.

I. INTRODUCTION

One of the motivations for undertaking experiments
with antimatter systems is the possibility to test the CPT
theorem of particle physics [1–5]. Invariance with respect
to charge conjugation, parity inversion, and time reversal
requires that fundamental particles and their antimatter
conjugates must have identical properties apart from the
reversal of some quantum numbers. Violation of the CPT
theorem would have profound implications for physics
and perhaps be responsible for the lack of antiparticles in

the Universe [6]. The antihydrogen molecular ion H
−
2 has

been identified [7, 8] as a particularly desirable candidate
for experimental study due to its increased sensitivity to
CPT tests compared to the atomic case.

Based on combined antiparticle and anti-atom traps,
with their long lifetimes for all confined species [2, 9, 10],
and the important role played by H+

2 in the chemistry

of the early Universe [11, 12], the formation of H
−
2 was

further identified [13] as a key gateway to produce more
complex antimatter species, including neutral molecular
antihydrogen and charged clusters.

Laser cooling of antihydrogen atoms and application
to 1S-2S spectroscopy [10, 14] provides a transformative
tool for antimatter studies, including the possibility to
create antimatter molecules. In a previous study [13],

several mechanisms for producing H
−
2 were investigated,

and an experimental scheme was proposed that relied on
antihydrogen atoms, H, held in a magnetic field minimum
trap. Laser driven production of metastable H(2s) atoms
via two-photon transitions would provide the reactants,
and the desired antihydrogen molecular ion would form
with the emission of a positron (e+) through the process
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of associative ionization (AI)

H(2s) + H(2s) → H
−
2 + e+ . (1)

This process is the antimatter analog for the formation

of H+
2 from a pair of H(2s) atoms. The H

−
2 molecule may

also be formed by radiative association (RA)

H + p→ H
−
2 + γ , (2)

and by associative detachment (AD)

H
+
+ p→ H

−
2 + e+ . (3)

Reference [13] estimated there would not be a sufficient
number density of antiprotons (p) in the trap for RA to
be a competitive process, and argued the requirement of

an intermediate H
+
ion would render the AD process to

be impractical [15]. Therefore, the study concluded that
the AI process (1) for a spin-polarized gas would be the

most promising approach to forming H
−
2 . AI with other

states of H has been suggested as a possible pathway [16],
however, this is not considered here.
The metastable H(2s) atoms have a natural lifetime

of ∼ 120 ms [17] but may be depleted by Stark-induced

mixing with H(2p) states due to the v⃗× B⃗ induced field.
The single photon decay to H(1s) can flip the positron
spin to an untrappable hyperfine state [17] and has been
estimated to be the largest source of trap loss for the
proposed scheme [13]. The H atoms may also be depleted
by Penning ionization (PI)

H(2s) + H(2s) → H(1s) + p+ e+, (4)

by double excitation transfer (DET)

H(2s) + H(2s) → H(2p) + H(2p), (5)

and by single excitation transfer (SET)

H(2s) + H(2s) → H(2s) + H(2p), (6)
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which adds to the spin-flip loss. It is assumed that hot
positrons produced by ionization would exit the trap
without disrupting any of the cold antihydrogen species.
The previous study [13] proposed lowering temperature
and the magnetic field strength of the trap to mitigate
Stark-induced losses. In order to utilize a weak magnetic
trapping field, a substantial fraction of the antihydrogen
atoms would need to be laser-cooled into the mK regime
[14, 18], and the magnetic field would need to be lowered
as much as possible before turning on the 1s-2s laser to
drive the AI process (1). Formation rates were estimated
to be around 10−2 s−1 for an H(2s) density of 103 cm−3 at

a temperature of 1 mK. While this formation rate for H
−
2

is rather low, there was cautious optimism [13] that the
proposed scheme may be achievable as further gains in H
trapping and cooling capabilities improve. The present
study aims to provide reliable theoretical data to help
guide this effort. We used antimatter notation above
to emphasize the motivation for the present work, but
the more familiar hydrogen notation is used below when
describing potential energy curves. As in the previous
study, we assume in the present work that the magnetic
field is sufficiently weak that its effect on the scattering
processes is negligible.

High energy fitting formulas [19] were used to estimate
the relative contribution of AI and PI at the low energies
required by the proposed scheme [13]. These formulas are
based on quantum calculations that used a degenerate
internal states (2s and 2p) approximation which neglects
coupling from fine structure and Lamb shift. This yielded
respective cross sections for AI and PI that behave as
E−1 and E−2/3 for energies greater than 10−4 eV. The
coefficient for the PI cross section is much larger than
for the AI cross section, so PI is the dominant ionization
process at thermal energies. However, extrapolation of
the fitting formulas leads to a crossing at E ≈ 10−7 eV,
and it was estimated [13] that AI would dominate at
lower energies. In the present work, we find there is no
such crossing when the degenerate states approximation
is used at lower energies. Furthermore, the AI and PI
cross sections are substantially reduced when the atomic
fine structure and Lamb shift couplings are included in
the calculation. This was taken into consideration in [13]
by re-scaling the AI and PI contributions obtained from
the high energy formulas to total ionization cross sections
that were available from a separate set of low energy
calculations [20]. The low energy calculations neglected
non-adiabatic radial couplings that were later found to be
important [21] and used a complex optical potential to
compute the total ionization cross section, so the relative
AI and PI contributions were not resolved. In order to
resolve these contributions and provide better estimates
of the rate coefficients required to simulate the proposed

scheme to produce H
−
2 molecules [13], we investigate the

AI formation process (1) and the competing depletion
processes (4)-(6) in a quantum formulation that includes
all electronic states that couple to the entrance channel
comprised of pairs of spin-polarized H(2s) atoms.

The previous set of low energy calculations [20] should
be replaced by the new set of improved calculations which
includes the non-adiabatic radial coupling that modifies
the DET cross sections at low energy and is responsible
for the SET process at all energies [21]. The importance
of non-adiabatic angular coupling is analyzed, and the
recommended rate coefficients are provided for a large
range of temperatures.

II. THEORY

Following previous work [21], scattering and ionization
are studied using a close-coupling expansion of the form

Ψ(r⃗1, r⃗2; R⃗) =
1

R

∑
n

ϕn(r⃗1, r⃗2; R⃗)un(R⃗) (7)

where r⃗1 and r⃗2 are the position vectors of the electrons
with respect to the center of mass of the nuclei, and
{ϕn} is an orthonormal basis set of products of atomic
functions. A non-inertial body-fixed coordinate system
may be used which rotates the z-axis so that it is always

pointing along the direction of internuclear separation R⃗.
This simplifies the potential energy but introduces kinetic
Coriolis couplings that fall off slowly at large-R. Alter-
natively, a space-fixed coordinate system may be used
which utilizes a gauge transformation [22] to remove all
non-adiabatic angular couplings that may occur in the
separated atom limit, however, this transformation was
found to introduce complications in the molecular region
for the present system [21]. Since ionization occurs at
short distances, we use a coupled states (CS) formulation
which neglects the non-adiabatic angular coupling arising
from the Coriolis interaction. The electronic Hamiltonian
may be written

Hel(r⃗1, r⃗2;R) =
∑
n

|ξn(r⃗1, r⃗2;R)⟩Vn(R) ⟨ξn(r⃗1, r⃗2;R)|

(8)

where ξn(r⃗1, r⃗2;R) is a molecular eigenfunction with
complex eigenvalue Vn(R) = En − i

2Γn. The Born-
Oppenheimer energies {En} and autoionization widths
{Γn} have been computed previously [23, 24]. Adiabatic
potential energy curves included in the calculation are
shown in Panel (a) of Fig. 1. The autoionization widths
for the 3Σ+

u states are close to zero for R > 15 a0. The
widths for the other H2 states are neglected; the error
introduced by doing so is expected to be negligible [21].
The atomic basis set in (7) may be defined by the

quantum numbers {la,ma, lb,mb, S,Σ} where la,ma and
lb,mb are the electronic orbital angular momentum and
projection quantum numbers for atoms a and b, and S
and Σ are the total electronic spin angular momentum
and projection quantum numbers. For cold collisions, the
atomic fine structure and Lamb shift energy splittings are
important, and it is convenient to transform the atomic
basis set to the total angular momentum representation
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FIG. 1. Panel (a) shows the Born-Oppenheimer (adiabatic) potential energy curves for H+
2 and H2 involved in the calculation.

The entrance channel is the 3Σ+
u state of H2 shown as a solid green curve. The dashed green curves are the other 3Σ+

u states
that are not the entrance channel. Panel (b) shows the diagonal elements of the coupling matrix Ṽnn′ used in the coupled set
of equations of Eq. 15. The legend partly specifies the asymptotic limit of each curve; parity and spin are omitted for the sake
of clarity. A full specification is in Ref. [21].

where these interactions are diagonal. The transformed
basis set {ψn} may be defined by the quantum numbers

{la, lb, ja, jb, j,Ω} where j⃗a = l⃗a + s⃗a, j⃗b = l⃗b + s⃗b, and

j⃗ = j⃗a + j⃗b is the total internal angular momentum with
projection Ω along the space-fixed z axis. Basis sets that
are symmetric with respect to inversion of the nuclei may
be defined as

|ϕ⟩ = |la,ma,lb,mb⟩+ρϕ|lb,mb,la,ma⟩√
2(1+δla,lbδma,mb )

|S,Σ⟩ (9)

|ψ⟩ = |la,lb,ja,jb⟩+ρψ|lb,la,jb,ja⟩√
2(1+δla,lbδja,jb )

|j,Ω⟩ (10)

where ρϕ = pσ(−1)la+lb and ρψ = p(−1)la+lb+j+jb−ja

with p = +1/ − 1 for gerade/ungerade symmetry and
σ = +1/−1 for S = 0/1. The atomic states (9) and (10)
are also symmetrized with respect to electron exchange
when computing overlaps with molecular states. This
yields the diabatic potential

Vij(R) =
∑
k

Uik(R)Vk(R)U
T
kj(R) (11)

where

Uij(R) ≡
∑
k

⟨ψi(r⃗1, r⃗2;R)| ϕk(r⃗1, r⃗2;R)⟩

× ⟨ϕk(r⃗1, r⃗2;R)| ξj(r⃗1, r⃗2;R)⟩ (12)

is a unitary matrix when the atomic basis set {ϕn} is
complete. The R-dependence of Uij is needed to account
for non-adiabatic radial coupling between the (2s, 2p)
and (2p, 2p) states arising from the electrostatic dipole-
quadrupole interaction [24].

For practical calculations, we restrict the basis set to
include 64 atomic states corresponding to n1 = n2 = 2.
The ungerade symmetry of the spin-polarized entrance
channel reduces the number of basis functions to the 36
states reported previously [21], and neglecting Coriolis
coupling further reduces the number of basis states to 9,
each with Ω = 1. Restricting the basis set to include
atomic states with n = 2 provides negligible basis set
truncation error for R > 20 a.u. At shorter distances,
the truncated atomic basis set leads to a numerical loss
of unitarity [24] for the transformation to the adiabatic
molecular basis, given by equation (12). Delta function
normalization of the diabatic basis set may be enforced
by inverting the overlap matrix

gij =
∑
k

Uik(R)U
T
kj(R) (13)

to obtain the potential

Ṽij(R) =
∑
k

g−1
ik Vkj (14)

which is asymmetric at short distances. This procedure
does not eliminate basis set truncation error, however,
it enables it to be more easily analyzed and controlled.
Fig. 1(b) shows the diagonal elements of the matrix Ṽnn′ .
For the entrance channel, there is a repulsive wall around
7.5 a.u. which shields the system from entering the region
where errors in the off-diagonal elements are most severe.
The centrifugal barrier also helps to shield higher partial
waves from entering the small-R region. The sensitivity
of the numerical results to the basis set truncation error
is studied below and found to be negligible.
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If theR-dependence of the overlap matrix (13) is slowly
varying, the radial derivative coupling may be neglected,

and we may generalize the single channel approach [19]
to obtain a set of inhomogenous differential equations

[
− 1

2µ

d2

dR2
+
ln(ln + 1)

2µR2
− (E −∆n)

]
un(R) +

∑
n′

Ṽnn′(R)un′(R) = S̃
(n)
vj (R) (15)

for the nuclear motion, where ln is the orbital angular
momentum for the nth channel, µ is the reduced mass,
and

S
(n)
vj (R) = χvj(R)

∑
m

Unm(R)

[
Γm(R)

2π

]1/2
(16)

is a source term that depends on the ro-vibrational

wave function χvj(R) of the H+
2 (H

−
2 ) molecule and the

widths for autoionization. Conservation of energy yields

E =
k2e
2 + ϵvj − 6.8 eV where ke is the electron (positron)

momentum and ϵvj is the ro-vibrational energy. The fine
structure and Lamb shift contributions are included by
adding the atomic energy defects ∆n along the diagonal.
These defects have been measured for antihydrogen by
the ALPHA collaboration [25], where the fine-structure
and Lamb shift splittings were found to be consistent
with the hydrogenic values at the level of 2% and 11%,
respectively. Energy defects for hydrogen were used in
our calculations.

The sensitivity of the numerical results to the basis
set truncation error was assessed by turning on the R-
dependence of Uij(R) at different distances R0. Fig. 2(a)
shows cross sections as a function of R0 for a relative
kinetic energy of 10−10 Eh. As expected, the SET cross
section falls to zero when R0 is large due to the removal of
R-dependent non-adiabatic coupling to the (2s, 2p) state.
All of the cross sections show strong variation at small R0

when the diabatic coupling (11) is used due to the loss of
unitarity associated with the truncated atomic basis set.
The overlap inversion method described above is able to
smooth out this sensitivity to yield cross sections that are
virtually identical for all R0 < 20 a.u. The ultracold limit
provides the most stringent test of the overlap inversion
method since there is no centrifugal barrier for s-wave
scattering. At higher collision energies, such as 10−10 Eh
shown in Fig. 2(b), the centrifugal barrier prevents the
system from entering the region where atomic basis set
truncation errors would be problematic. It is clear that
the sensitivity in the R0 < 20 a.u. region is reduced
compared to Fig. 2(a). The amplitude of the oscillations
in the SET cross section around 100 a.u. is also reduced
at higher collision energies. The numerical insensitivity
to small R0 agrees with previous studies [21] and suggests
the error introduced by truncation of the atomic basis set
may be mitigated with the overlap inversion method.

The spin-polarized atoms approach in the 3Σ+
u state.

The emitted electron must have odd angular momentum,
and the transition obeys the selection rule j = l ± 1 in

order to preserve the overall ungerade symmetry of the
system. The ionization cross sections are then given by

σvj =
2π3

µE

[
(j + 1)

∣∣∣⟨u(n)j+1|S̃
(n)
vj ⟩

∣∣∣2 + j
∣∣∣⟨u(n)j−1|S̃

(n)
vj ⟩

∣∣∣2] .

(17)
Following [19], the H+

2 Hamiltonian is diagonalized in a
Sturmian (L2) basis set to obtain both the bound state
(negative energy) and pseudostate (positive energy) wave
functions. The associative and Penning ionization cross
sections are then resolved using

σA =

jmax∑
j=0

nj∑
v=0

σvj (18)

σP =

jmax∑
j=0

vmax∑
v=nj+1

σvj (19)

where nj is the index of the last bound vibrational level
for the rotational level j, and the dissociative continuum
is described by pseudostates with v > nj .

The cross sections for SET, DET, and total ionization
are computed within the CS approximation as in previous
work [20, 21] and are given by

σψ→ψ′ =
2π

k2ψ

∑
l

(2l + 1)|T (l)
ψ→ψ′ |2 (20)

σψ→ion =
2π

k2ψ

∑
l

(2l + 1)

1−∑
ψ′

|S(l)
ψ→ψ′ |2

 (21)

where sums are taken over even values of l due to proton
symmetrization. Non-adiabatic angular coupling may be

included using the total angular momentum J⃗ = j⃗ + l⃗.
The corresponding cross sections are given by [21]

σψ→ψ′ =
2π

k2ψ

∑
JM

∑
J′M ′

∑
lm

∑
l′m′

(2J + 1)(2J ′ + 1)

[T (J)]
l′a,l

′
b,j

′
a,j

′
b,j

′,l′

la,lb,ja,jb,j,l
[T ∗(J ′)]

l′a,l
′
b,j

′
a,j

′
b,j

′,l′

la,lb,ja,jb,j,l(
j l J
Ω m −M

)(
j′ l′ J ′

Ω′ m′ −M ′

)
(
j l J ′

Ω m −M ′

)(
j′ l′ J
Ω′ m′ −M

)
(22)
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FIG. 2. Cross sections as a function of R0. Panel (a) is for collision energy of 10−10 a.u. The red curves show great sensitivity
when R0 goes below 20 a.u. due to the incompleteness of the atomic basis set in this region. The black curves show that the
overlap inversion method (see text) is able to smooth out this sensitivity. Panel (b) shows a similar plot for collision energy of
10−6 a.u. The overlap inversion method is not as important at higher energies due to the centrifugal barrier, which prevents
higher partial waves from entering the region where atomic basis set truncation errors would be problematic.

σψ→ion =
2π

k2ψ

∑
JM

∑
ll′j′

(
j l J
Ω M − Ω −M

)2

(2J + 1)

{
1−

∣∣∣[S(J)]l′a,l′b,j′a,j′b,j′,l′la,lb,ja,jb,j,l

∣∣∣2} (23)

III. RESULTS

The set of inhomogeneous differential equations (15)
and the associated set of homogenous equations are both
solved using the renormalized Numerov method subject
to appropriate boundary conditions [26]. For the source
term, the bound ro-vibrational wave functions and the
continuum pseudostates are obtained by diagonalization

of the H+
2 (H

−
2 ) Hamiltonian in the orthonormal Laguerre

polynomial basis set

ϕl,n(R) =
√

an!
(n+2l+2)! (aR)

l+1 exp(−aR/2)L(2l+2)
n (aR).

(24)

The non-linear scale parameter a was varied to provide
stationary PI cross sections (AI cross sections are less
sensitive to this parameter). The maximum vibrational
level vmax was 100 for all energies, and jmax ranged from
2 to 76, depending on the collision energy. When the
source term is omitted, the coupled set of homogeneous
equations, corresponding to the Schrödinger equation for
a complex potential, allows total ionization cross sections
to be calculated. It also allows computation of the elastic
and inelastic (SET and DET) scattering cross sections.
In all calculations, the sum of AI and PI cross sections,

σA and σP , is compared with the total ionization cross
section computed by solving the equations without the
source term. Excellent agreement was found in all cases,
which indicates that the basis set (24) is well-converged.
Calculations were also performed with and without the
atomic energy defects in order to assess the impact of
the additional couplings that become important at low
collision energies.
Results with energy defects ∆n set to zero are shown

in Fig. 3. Panel (a) shows cross sections for AI and PI
compared to power law fits to high energy data [19]. In
contrast to the low energy extrapolations obtained from
the fitting formulas, and consequently the expectations
of the previous study [13], we find that PI continues to
dominate over AI as the energy is decreased. The fit
σ = 14.4E−2/3 was determined from the Langevin model,
and it describes the total ionization cross section quite
well over this energy range. It also describes the PI data,
since PI is the dominant process. However, the fit to the
AI data starts to deviate from calculated cross sections
at the lower energies. This fit is based on the prefactor
in Eq. 17. The deviation from the fit indicates that the
transition matrix elements in Eq. 17 exhibit a greater
energy dependence for lower collision energies.
Fig. 3(b) compares cross sections that neglect spin with

those that incorporate fine-structure and Lamb shift.
The cross sections exhibit greater energy dependence and
more structure when spin is included. At low energies,
SET is higher when spin effects are included, whereas
DET is substantially reduced. It is interesting to note
that the two sets of curves do not reach full agreement
until E > 10−3 a.u., whereas the fine structure splittings
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FIG. 3. Panel (a) shows cross sections for AI (blue points) and PI (red points) within the degenerate states approximation;
these cross sections were computed by neglecting fine-structure and the Lamb shift. Power law fits to the high-energy data
from the previous study [19] are shown as solid lines. The AI cross sections deviate from the fit below 10−6 a.u., so there is no
crossing of the actual data in contrast to the extrapolated curves. Panel (b) compares SET, DET, and total ionization cross
sections for calculations that included fine structure and Lamb shift (solid curves) and calculations that used the degenerate
states approximation (dashed curves).

are about 1000 times smaller than this collision energy.
This sensitivity is due to the long range of the molecular
potentials. The autoionization widths are much shorter
in range, which allows better agreement in the ionization
curves above E > 10−6 a.u. This is consistent with the
relatively short distance (∼100 a.u.) required to match
the boundary condition for the inhomogeneous problem,
compared to the much longer distance (∼10,000 a.u.) for
the homogeneous case. Nevertheless, a small increase in
ionization occurs for energies between 10−5 − 10−3 a.u.
compared to the degenerate states approximation, which
continues to follow the O(E−2/3) behavior predicted by
the Langevin model.

Fig. 4 shows cross sections determined by including
the fine-structure and Lamb shift energy defects in the
set of coupled equations (15). Panel (a) shows AI and PI
cross sections computed from the inhomogeneous set and
compares their sum to the total ionization cross section
computed from the homogenous set. As noted above, the
agreement is very good over the whole range of collision
energies. The high energy fitting formulas are also shown.
Not only is there no crossing point for the AI and PI
curves at low energies, but a substantial reduction in the
magnitude of both cross sections may be seen compared
to the high energy fits. This was taken into consideration
in [13] by re-scaling the relative AI and PI contributions
obtained from the high energy fits to the total ionization
cross sections [20] at the lower energies.

Fig. 4(b) compares the total ionization cross section
with the SET and DET cross sections. Also shown are
the previous results [20] which were used to re-scale the
low energy AI and PI cross sections [13]. The previous
results, which neglected non-adiabatic radial coupling to
the (2s,2p) state in the diabatic potential (11), show good
agreement with the present DET and ionization results
above 10−6 a.u., but the neglected coupling prevents SET
transitions from occurring. At lower energies, significant
differences may be seen in the present cross sections. The
re-scaling procedure used in [13], therefore, introduces
some additional uncertainty due to the missing coupling
in the previous results [20]. Perhaps more importantly,
the present DET cross sections show strong deviation
from the previous results at low energies. In the range
10−8 − 10−7 a.u., the present DET curve is significantly
higher than the previous result and continues to be the
dominant energy transfer process. Below 10−8 a.u., the
ionization cross section is largest as the DET curve falls
below the previous result. SET and DET are comparable
as the ultracold Wigner threshold regime is reached at
energies below 10−10 a.u.

Fig. 5 shows rate coefficients for the various processes
as a function of temperature. The DET and ionization
rate coefficients have been multiplied by 2 to account for
the loss of two metastable particles per collision. There
is also a factor of 2 enhancement in the s-wave partial
cross sections due to the identical nuclei. In other words,
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FIG. 4. Ionization cross sections as a function of kinetic energy. Panel (a) shows that the AI and PI cross sections are both
substantially lower than the extrapolated curves obtained from the high energy data [19]. The total ionization cross section,
computed using homogeneous and inhomogeneous methods, shows very good agreement over the whole energy range. Panel (b)
compares the total ionization cross section with inelastic SET and DET cross sections. The dashed curves are results [20] which
neglected non-adiabatic radial coupling to the (2s,2p) state.
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FIG. 5. Panel (a) shows rate coefficients as a function of temperature. The DET and ionization rates have been multiplied by
2 to account for the loss of two metastable particles per collision. Panel (b) shows trap loss rate coefficients compared to MIT
experimental data [27]. The dashed curve is the total ionization rate coefficient (AI+PI), and the solid curve is the total trap
loss rate coefficient (AI+PI+SET+DET).
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if the complex scattering length a = α− iβ is defined for
the entrance (2s,2s) channel, with β representing inelastic
losses including ionization, then the limiting zero energy
cross sections are given by σel = 8π|a|2 and σin = 8πβ/k
which are twice the respective values for distinguishable
particle collisions [28].

Fig. 5(b) compares the total rate coefficients with MIT
trap loss data [27]. Similar to previous findings [19, 29] at
thermal energies, the theoretical results are larger than
the experimental data, and the agreement is improved if
the theoretical rates are rescaled by a factor between 2
and 4. This discrepancy is likely due to limitations of the
CS formulation, which often provides reliable estimates
of relative transition probabilities even when there are
errors in the absolute values. This is discussed in more
detail below.

IV. DISCUSSION

As noted above, the largest source of uncertainty in the
present CS calculations is the neglect of non-adiabatic
angular couplings arising from the Coriolis interaction.
Some effort has been made to address this issue. One
approach [30, 31] is to include the Coriolis coupling in
the set of coupled equations and obtain the scattering
matrix in the body-fixed frame. The transformation

|jl⟩ = (2l + 1)1/2
∑
Ω

(
j l J
Ω 0 −Ω

)
|jΩ⟩ (25)

back to the space-fixed frame is applied to ensure the
channels have the correct asymptotic behavior for a given
orbital angular momentum l. Unfortunately, the increase
in the number of coupled equations and their slow fall-off,
which requires propagation to extremely large distances,
have so far rendered this approach to be impractical. An
alternative approach [22] applies a molecular-to-atomic
gauge transformation in a space-fixed frame to remove
all non-adiabatic angular couplings that arise from the
vector potential in the separated atom limit. Short-range
off-diagonal (Ω ↔ Ω

′
) elements induced by the vector

potential are generally small and may be neglected [22].
The resulting transformed scalar potential

V
(JM)
n,n′ (R) = [(2l + 1)(2l′ + 1)]1/2∑

Ω

(
j l J
Ω 0 −Ω

)(
j′ l′ J
Ω 0 −Ω

)
V

(JΩ)
n,n′ (R)

(26)

then allows the scattering matrix to be more efficiently
computed in the space-fixed frame. The resulting cross
sections are computed using equations (22) and (23).
This approach was attempted for the present system [21].
Unfortunately, the additional coupling and coordinate
dependence of the unitary transformation (12), which
connects the atomic and molecular basis sets, combined
to make the gauge transformation (GT) approach more

sensitive to basis set truncation error than was observed
for the CS calculations. Nevertheless, useful insights may
be gained from the GT method that allow an assessment
of the importance of the neglected Coriolis terms in the
CS results.
Fig. 6 compares the CS and GT results. Panel (a)

shows SET and DET rate coefficients computed with the
GT method using different values of R0 to turn on the
R-dependence of Uij , similar to the procedure described
above for the CS calculations. The GT curves are mostly
insensitive to R0 for temperatures above 30 mK as long as
the value is not too large to exclude non-adiabatic radial
coupling to the (2s,2p) state. Below this temperature,
the DET curves are uniformly lowered as R0 is varied
from 100 to 40 a.u. When R0 is reduced further, the
results (not shown) become more erratic due to atomic
basis set truncation error. The ionization rates are much
less sensitive to the choice of R0. Panel (b) compares
GT and CS ionization rate coefficients. The shape of the
curves are very similar, however, the CS curve is larger
by about a factor of two. The GT results are in closer
agreement with the MIT trap loss measurements [27].
This comparison neglects SET and DET contributions,
which are presumably included in the experimental rate
coefficients. Panel (a) shows the CS and GT calculations
for these contributions have roughly the same behavior,
however, there is no scaling factor that brings the curves
into agreement, as in the ionization case. Therefore, it is
not entirely clear which results should be recommended
for the SET and DET rates. For ionization, it is clear
that a factor of two re-scaling of the CS results would
bring the total ionization rate into better agreement with
the MIT trap loss data [27], and the AI rate into better
agreement with measurements at thermal energies [29].
It is also noteworthy that the downward trend shown in
Fig. 6(a) for the DET curves with decreasing R0 points to
the possibility that DET may be a less significant source
of trap loss than indicated by the CS results.

V. CONCLUSION

A recent study [13] suggested that it may be feasible
to produce antihydrogen molecular ions in the future by
laser exciting cold antihydrogen atoms held in a magnetic

trap. The desired H
−
2 would then form by AI, which may

occur during collision of two metastable H(2s) atoms.
The proposed experimental scheme relied on low energy
extrapolations of thermal rates, which predicted that AI
would be the fastest exothermic process. The present
study, however, reveals that AI is about 2.5 times less
efficient than PI at the mK temperatures required by the
experimental scheme. Additionally, it is found that AI
dominates over SET but is generally less efficient than
DET, except at sub-mK temperatures where the DET

rate drops sharply. Future efforts to produce H
−
2 via

the AI formation route will therefore need to carefully
account for these trap loss mechanisms.
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FIG. 6. Panel (a) shows SET (blue) and DET (red) rate coefficients computed with the GT method. The dashed curves used
R0 = 40, 50, 60, 70, 80, 90, 100 to compute the cross sections. Sensitivity appears for temperatures below 30 mK, where smaller
DET rates are uniformly obtained as the value of R0 is lowered. Also shown are the present CS results (solid curves). Panel (b)
shows the GT ionization curves are much less sensitive for the same range of R0. The shape of the CS curve is very similar to
the GT curve but approximately two times larger. The MIT trap loss data [27] are shown for comparison.

The relative ionization contributions (AI and PI) were
resolved using an inhomogeneous CS formulation which
yields a set of coupled equations in a rotating body-fixed
frame but neglects the influence of the Coriolis force.
The total ionization results were confirmed by solving
the homogeneous set of CS equations. The influence
of neglected non-adiabatic angular coupling induced by
the Coriolis interaction was assessed by comparing to a
separate calculation performed in an inertial space-fixed
frame, which utilizes a gauge transformation to remove
all non-adiabatic angular couplings in the separated atom
limit. The resulting GT cross sections showed qualitative
agreement with the CS cross sections but are more prone
to basis set truncation error. The CS total ionization
rate may be brought into good agreement with the GT
result by dividing by two. This re-scaling approximately

accounts for the neglected Coriolis coupling and brings
the CS ionization results into better agreement with two
existing experiments [27, 29]. Future work should also
include hyperfine splitting. Although hyperfine defects
are very small (∆ ∼ 10−8Eh), the present study showed
the fine structure and Lamb shift defects had a strong
influence on the scattering dynamics at collision energies
that were ∼1000 times larger than the splittings.
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