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The doubly excited 'S, and 3% statesof the H, moleculeconveging to the H(n=2)+H(n’=2) limit
havebeencalculatedusing explicitly correlatedbasisfunctions,giving accurateresultsout to a nuclearsepa-
ration sufficiently large to apply asymptoticexpansiondor the potentialenegy. The autoionizationwidths
havebeenobtainedusingthe complex-scalingnethod.For nuclearseparationgarger than22 a.u.,asymptotic
expressiondor the interactionenegieshavebeenobtainedfrom perturbationtheory
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I. INTRODUCTION

After manyyearsof intensiveresearciBose-Einsteircon-
densationin a gas of spin-polarizedhydrogenatoms was
finally achievedin 1998[1]. In this experimenttwo-photon
spectroscopyf the 1s-2s line was usedas a tool to deter
mine the temperatureand densityof the condensatethrough
studiesof the collisionally shifted and broadenedspectral
lines [2,3]. The Lymanw photonsfrom excited metastable
hydrogenwere detectedollowing a 2s-2p Starkmixing in-
ducedby an electricfield. It is importantto distinguishthis
field-inducedquenchingof the H(2s8) statefrom collisional
quenching due to the autoionization reaction H(2s)
+H(2s)—H, +e~ and due to excitation transfer H(2s)
+H(2s)—H(2p)+H(2p), and to understandhe effect of
thesecollisionson the linewidth.

There are also prospectsfor novel sourcesof excited
H(2s) atoms,e.qg.,throughthe useof Starkchirpedadiabatic
passagd4]. This will not only allow direct experimental
studiesof theseexcitedatoms,but might alsodeliver a new
source of Lymanw« photons, with applicationsin high-
resolutionspectroscopyThe ratesfor collisional quenching
determineghe maximumdensityof H(28) atomsthatcanbe
achievedin this type of experiment.

The doubly excitedH, statesdescribingthe collision of
two H(n=2) atomsbelongto the so-calledQ, serieslying
below the 2p, stateof H, . Someearlierworks havead-
dressedhesestates[5—7], but to our knowledgethis is the
first calculationaddressinghe long-rangeinteractions.Our
numericalcalculationsextendthe data previously available
from the internucleardistanceR=6 a.u.to R=22 a.u.The
calculation includes the width due to autoionization.
Asymptoticformulasaregivenfor R>22 a.u.Ourtreatment
doesnot asyet include the fine-structuresplitting or Lamb
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shift. In a recentpaperthesemoleculardatahavebeenused
to calculateratesfor autoionization excitationtransfer and
elasticscatteringat thermaltemperature$8].

Il. MOLECULAR REGION

The molecularregion of interatomicdistancesis where
the atom-atominteractionis too strongto be treatedas a
small perturbationof the atomic states,and hencehasto be
determinechumericallyby meansof a molecularcalculation.
The characteristicradius of a hydrogenatom scalesas the
squareof the principal quantumnumbern. Hence,for a hy-
drogen molecule that asymptotically separatesnto two n
=2 excited hydrogenatomsthe molecularregion is about
four times larger than for the ground stateof H,. We have
foundit sufficientto extendthe molecularcalculationsout to
R=22 a.u.At this nuclearseparatiorthe effects of electron
exchangeare negligible. Two H(2s) atomscanform a mo-
lecular stateof either 'S or 3% symmetry For eachof
thesesymmetrieshereare four statesthat separatento two
n=2 excitedhydrogenatoms.

A. Electronic autoionization

The statescalculatedn this work areresonancethatcan
decay through autoionization.For resonanceshe standard
variationalprinciple is not valid. Neverthelessthis principle
can be extendedto the case of resonanceswithin the
complex-scalingapproach(see, e.g., the review in [9] and
referencegherein. The complex-scalingoperatorU is de-
fined through its action on a function f of the coordinate
vectorr in three-dimensionaspace,

U(0)f(r)=e*"2f(e'’r). 1)

The complex-scaledHamiltonianH(6) = U()HU ~1(6) de-
finesan eigenvalueproblem

H(o)e/=E/c/. 2)
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The complexeigenenajiesEf are of threekinds: (i) bound
stateswhich areunchangedby the complexscaling;(ii) con-
tinuum states,which are rotatedby an angle 26 into the
complexplane; (iii) resonanceswhich are uncoveredwhen
6>argE’/2. The real part of a resonanceeigenvalue,
Re(E,.4, is the enegy position of the resonanceand the
imaginarypartis relatedto the width I of the resonances
IM{E,g4=—T172.

While in the exactsolution of Eq. (2) the resonanceei-
genvalueswill be stationaryfor 6>argE,.42, any approxi-
mate solution using a finite basiswill yield an eigenvalue
that varieswith 6. For resonanceshe variational principle
reducesto a stationarity principle without lower or upper
bounds.Thatis, the optimal scalingangle 6, is determined
via the conditionthat 6= 6, minimizesthe derivativeof the
enegy dE(6)/d#, which in turn determineghe complexen-
ey of the resonancek .= E(f,,). For practical purposes
in the contextof variationalcalculationst canbe shownthat
the use of the complex-scaledHamiltonianH(6) is equiva-
lent to the useof complex-scaledbasisfunctions. Therefore
it is possibleto uniquelydeterminea resonancdy requiring
maximum stability with respectto a variation of the basis
and of the complex-scalingactor 6, but it is impossibleto
determinea lower or upperboundto the enegy position or
width of the resonance.

B. Computational details

The applicationof the complex-scalingapproachto mo-
lecular systemsis not straightforward,since the molecular
Born-Oppenheimer Hamiltonianis not analytic with respect
to dilation. A possiblesolutionto this problemwassuggested
for diatomic moleculesin Ref. [10], whereit was demon-
strated that by using prolate-spheroidalcoordinates| &;
=(Fiat+Fig)/R,7i=(Fia—Fig)/R] it is possibleto imple-
mentexterior complexscalingsolely by scalingof the elec-
tronic coordinate<; .

The calculationswere performedusing an extendedver
sion of a computerprogramoriginally written by Kotos and
Wolniewicz [11]. The two-electronwave function ¥;(1,2)
describingstatej is expressedn termsof explicitly corre-
lated basisfunctionsas

¥(12=3 ¢ (1P et — ati— ab) € nE v

X [exp( B+ Bmy) = (—1)5*S
xexp(— B~ Bn2)], 3

where the upper sign gives 'S, symmetryand the lower
signgives 33, symmetry Here Py, is the electronpermuta-
tion operatoy p=2r1,/R, with r,, andR the interelectronic
and internucleardistancesrespectively r; ,s; ,F; ,8; ,u; are
integersanda, B, @, B arerealnumbersThe coefficientse; j
are determinedthrough the diagonalizationof the general-
ized eigenvalueproblem.

As discussedn Sec.ll A the variationalprinciple cannot
be appliedfor resonancedhut insteadwe usethe complex-

PHYSICAL REVIEW A 65 042501

scalingmethod.One possibleand practicalapproachto de-
terminingresonancewithin the complex-scalingramework
is to performasa first stepa numberof real-scalingcalcula-
tions in order to be able to selecta range of real-scaling
factorsp, whereoptimal stability of the positionof thereso-
nanceis observedAfter fixing thereal-scalingparameteto a
value @, in this regime, a variation of the phaseé of the
scalingfactor is performedas a secondstepof the calcula-
tion.

In the presentcalculationthe stability of the real enegies
of the resonancewasinvestigatedhroughthe scalingof ¢,
and &,, which for practical reasonswas performedby the
equivalentprocedureof an inversescalingof the exponents

a and « in Eq. (3) by a real parameterValuesof the non-
linear parametergyiving a good stability underthis scaling
were soughtfor integervaluesof R, usingasa startingpoint
the 249-termbasisfrom Ref.[12]. It turnsout thatit is very
difficult, especiallyat shortinternucleardistancesto makea
very precisedeterminatiorof the bestpossiblenonlinearpa-

rametersinstead approximatevaluesof «,3,a, 8 whereall
four resonancesshowed good stability were determined.
Sometimesseveralsetswereusedfor a singlevalueof R, in
order to be able to assesghe accuracyof the results.The
nonlinearparameterat nonintegewaluesof R wereobtained
by an interpolationof the optimal exponentsdeterminedat
integervaluesof R.

In the next stepnew refinedbasissetswere obtainedby
testing a large number of sets of integer exponents

{mi;ri.si.ri,s}, anddiscardingthosetermsthathadonly a
small effect on the enegiesof theresonancedJsingthe sets
of integer exponentsobtained,togetherwith the nonlinear
parametersoptimized before, we arrived at our final basis
sets.In this way we createdfor eachsymmetrythreediffer-
ent basissetscoveringdifferent R intervals, limited in size
by thelinear dependenceauseddy the finite numericalpre-
cision of the calculation.In the caseof '3, symmetrythe
basis-sesizeswere 380,430,and250for R<6, 6<R<12,
andR>12 a.u.,respectivelyandin the caseof 33, sym-
metry 330, 380, and 300 for R<7, 7<R<13, and R
=13 a.u. In the outermostregion we used different basis
setswith separatelyoptimized setsof integerexponentsor
eachstate,while in the innerregionsthe samesetof integer
exponentavasusedfor all four statesof the samesymmetry
At the boundariesf the rangeof R we consideredyve did,
however haveto reducesuccessivelythe size of our basis
setsin orderto avoid linear dependencé the basis.

The complexresonancenegies were obtainedusing the
complex-scalingpperationé; , 7, — ce'%;, »; in the way in-
troducedand describedin Ref. [13]. For this purposethe
basis-separametersr anda aremodifiedin suchaway that
they containthe previously determinedg oy, i.€., a calcula-
tion with o=1.0 (and #=0.0) yields now optimal stability
of theresonantnegy on therealaxis. Thenthe Hamiltonian
matrix is calculatedor a numberof real valuesof thescaling
parametep . Eachmatrix elementis thenfitted to a polyno-
mial in ¢, which canbe analyticallycontinuedinto the com-
plex plane, and thus gives the matrix elementat eomplex
valuesof y=p exp{6). The generalizeceigenvalueproblem
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FIG. 1. Potentialenegies (a) andwidths (b) for the 'S ; states
that correlateto n=n’=2 atomicstates.

of this eomplex symmetric Hamiltonianis then solvedfor a
seriesof # values.The complexenepy of the resonances
determinedrom the minimumvalueof dE/d 6. After numer
ous testswe found that the best resultswere obtainedby
usingarealgrid of 15 ¢ valuesin theinterval 0.86-1.14in
stepsof 0.02 on the real axis and by fitting each matrix
elementto a fourth-orderpolynomial.

C. Results

The electronic potentials and autoionizing widths ob-
tainedare presentedn Fig. 1 for '3, symmetryandFig. 2
for 33 symmetry Only stateshavingthe asymptoticenegy
—0.25 a.u.aredisplayedWe find two bindingandtwo non-
binding statesof eachsymmetry

An avoidedcrossingbetweenthe secondand third 12g
statesat R=5.5 a.u. is clearly visible in Fig. 1. Also the
correspondingautoionizationwidths show a striking change
of characterat this internucleardistance.Further avoided
crossingsoccur at shorterinternucleardistancesin particu-
lar, a fifth more highly excited state correlatingto the n
=3,n’ =2 threshold,andconsequentlyot displayedin Fig.
1, crosseghe fourth stateat R=4.5 a.u.Our basissets,be-
ing optimizedfor statescorrelatingto then=n"=2 thresh-
old, did not give a good descriptionof this more highly ex-
cited state.Thereforewe havenot continuedour calculation
of state4 insidethis avoidedcrossing.For the 33 symme-
try a similar avoidedcrossingbetweenthe fourth stateanda
more highly excitedstateoccursalreadyat R=8.6 a.u.

The molecularstatesdiscussedn this paperwererecently
calculatedn therangeO<R<#6 a.u.by SancheandMartin
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FIG. 2. Potentialenegies (a) andwidths (b) for the 33 states
that correlateto n=n’=2 atomicstates.

[7] usingthe methodof Feshbactprojectors.In this method
the H, statesare expandedin a basisof bound and con-
tinuum one-electrororbitals of H, . The H, orbitals were
calculatedin a one-centerbasis built on B splines. This
methodis known to be accurateat short internucleardis-
tancesand hasadvantagei facilitating a physicalinterpre-
tation of the molecularstatesThis methodcan,however not
be usedfor large internucleardistancesbecausethe one-
centerapproachusedruns into numericalproblemsfor in-
creasinginternucleardistances.

Our method,on the other hand, being basedon prolate-
spheroidaktoordinateghatby definitionarecenterecbn both
nuclei, gives accurateresultsout to an internucleardistance
sufficiently large to apply the asymptoticforms describedn
Sec.lll. In principle, our methodis alsowell suitedfor cal-
culationsat short internucleardistancessinceit very effi-
ciently incorporateselectroniccorrelation. The groundstate
of H, hasbeenaccuratelycalculatedat R=0.2 a.u.usinga
249-termbasisof the sametype asours[12]. When consid-
ering the doubly excited states,however the situation is
quite complicatedat shortinternucleardistancessincethere
aremanycloselylying statesandmanyavoidedcrossingsin
fact, at short distancesthe stateswe have calculatedhave
enepgieslessthanthe 2po, stateof H, , underwhich there
is a Rydbeg seriescontainingan infinite humberof states
thatwill be crossedHence,to accuratelydeterminethe dou-
bly excitedstatesat shortinternucleadistancest is not suf-
ficient to use,as we have done,the samebasisset for all
statesof the same symmetry Instead,for each state one
would haveto carefully optimizeanindividual basisset.Ad-
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FIG. 3. Comparisonof our resultsfor potentialsof the 12;
states(solid lines) to the resultsin Ref.[7] (crossey Ref.[6] (tri-
angle$, and Ref. [5] (diamonds.

ditionally, sincethe stategapidly changecharactewhenR is
decrease@nd avoidedcrossingsare encounteredthis opti-
mizationwould haveto be repeatecht eachinternucleardis-
tance.Sinceour main interesthasbeenthe long-rangeinter-
actionswe havenot found it worthwhile to go throughthis
very elaborateprocedure.

In the region of R where our calculationsoverlap with
thoseof SancheandMartin, comparison®f theresultshave
beenmadein Figs. 3 and 4. The comparisonsalso include
resultsby Guberman[5] and Tennyson[6]. Our resultsfor
the '3, statesagreevery well with the resultsof Sanchez
and Martin. We confirm their conclusionthat the enegy of
statel calculatedby Tennysonis somewhatoo high. Also
our width of statel agreesloselywith SancheandMartin,
while Tennysorobtaineda larger width. For 33 symmetry
our calculationonly extendsdownto R=5 a.u.,limiting the
opportunitiesfor comparisonswith earlier works. We note
that our enegies are significantly lower than those of
Sanchezand Martin for all four states.Usually this is taken
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FIG. 4. Sameas Fig. 3 but for the widths. Lines showour data
codedasin Fig. 1. Resultsfrom [7]: statel (opentriangles, state2
(crossep state3 (opendiamonds, state4 (squares Resultsfrom
[6]: statel (filled triangles, state3 (filled diamonds.
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as a sign of betteraccuracy but as notedin Sec.Il B this
neednot necessarilybe true for calculationsof resonances.
For thewidthswe notethatour resultsfor the secondstateof
3% ,+ symmetryare significantly smallerthan the resultsof
Sanchezand Martin. All in all, consideringthat very differ-
ent computationalapproachefiave beenused,we find that
the agreementith the data of Sanchezand Martin is re-
markably good. This gives us confidencein our resultsfor
R>6 a.u.,especially sincebetterstability of the eigenval-
ueswasobservedor larger internucleardistances.

IIl. ASYMPTOTIC REGION

In this sectionwe shall discussthe asymptoticmolecular
statesin termsof atomic stateswith well-definedorbital an-
gular momentuml,m, and spin s;mg. This meansthat the
spin-orbitinteractionwill beignoredhere,anapproximation
that is valid when the collision enepgy is higher than the
fine-structure splitting of the hydrogen atom, 4.5
x10 % eV=0.53 K. Hencethe 2s and 2p statesof the
hydrogenatom are approximatedas being degeneratén en-
ergy. At large internucleardistanceghe wave function will
approacha productof two atomicstates(or rather as will be
seenbelow a linear combinationof suchproducts. For suf-
ficiently large internucleardistanceshe molecularpotential
enepgies may then be calculated analytically treating the
electrostaticatom-atominteraction by perturbationtheory
Theresultingasymptoticpotential-enayy curvehastheform

E(R):§+$+§+E+“" (4)

wherethe C; and C5 termscomefrom first-orderperturba-
tion theory and are nonvanishingas a result of the degen-
eracy of the 2s and 2p states,while the Cg and Cg arise
from second-ordeperturbationtheory andare presenteven
if the degeneracys lifted.

A. Exchange

The atom-atominteraction containsalso a contribution
from the exchangeof the two electronsAt large internuclear
distanceghis contributionvanishesexponentiallyi.e., faster
thanthe electrostatidnteraction.The exchangecontribution
is difficult to treatconsistentlyin perturbationtheory In the
following sectionwe shall show how this contributionmay
be extractedfrom our numericaldata.

We denotethe productstateof two noninteractingn=2
hydrogenatomsA and B by |2!,2!;,>. Herel,l’ specifythe
angular momentum, the subscriptsl,|’=A,B denote to
which hydrogenatom the orbital belongs,and the ordering
reflectswhich electronis occupyingthe orbital, i.e., “elec-
tron 1” belongsto the first orbital and “‘electron 2” to the
second.

The molecularHamiltonianis invariantunderinversioni
of all electroniccoordinatesglectronexchangeP,,, andre-
flection in a plane containingthe nuclei. Let p=*1 be the
parity underinversion(gerade or ungerade symmetry, and
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o= *1 the parity underexchanggsingletor triplet symme-
try). From an atomic productstate|21,2I5) one may then
generateasymptoticorbitals adaptedto the molecularsym-
metries(symmetrizationwith respectto reflectionis not in-
cluded:

[|21a205) +po(—1)""[21,21)

1
VN =
¥ o) 2\1+ oy,

+o|21521,) +p(— 1) |21g211)]. (5)

In this work we are primarily interestedn the interaction
betweerntwo 2s atoms.Hence therelevantorbitalsarethose
with '3 and 33 symmetriegin the caseof spin-polarized
hydrogenonly the latter symmetryis relevantsinceall col-
lisionswill thenhavetriplet spin). Therearefour orbitals of
eachsymmetryconveping to then=n’ =2 threshold.These
are degenerat@asymptotically(if spin-orbitinteractionis ig-
nored, but not for finite R. The actualmolecularstatescor-
relate not to single productsof atomic states,but to linear
combinationsHence we cannotfocusonly onthe|2s,,2sg)
asymptoteThe molecularinteractioncouplesthe 2s and2p
atomic states,and hencethereis a possibility for 2s—2p
transitionsto occurin elastic2s-2s collisions. The structure
of Eqg. (5) will still remainvalid for the actual asymptotic
molecular states,althougheachterm |21,21g) will be re-
placedby a linear combinationof suchterms.

Using a symmetry-adaptedolecularorbital of the form
in Eq. (5), the expectatiorvalue of the Hamiltonianis

1
<‘I,mol|HmoI|‘Pmol> :—[<2’A2’|,3|Hmol|2’A2’I,3>

+po(—1)" (205215 Himol 21 121 )

+ O-<2lA2’,B|HmO||2”BZIA>

+p(—1)" (20205 Hino 21521)].
(6)

Thefirst two termsarethe direct contributionsto the enepy;,
whichwill betreatedby perturbatiortheoryin the following
section,and the last two terms are the exchangecontribu-
tions. Although approximateanalytical formulas valid for
large R exist for the exchangeterms[14] theseare quite
involved,andherewe shallinsteadextractthe exchangeon-
tribution from our numericaldata.

The way to extractthe exchangecontributionis easyto
infer from the form of Eq. (6). For 'S, symmetryone has
p=o=1, while for 33, p=0o=—1. Hence,we seefrom
Eq. (6) thatfor a 'S, , 33 | pair of stateshatasymptotically
separatdo the samecombinationof atomic orbitals, the di-
rectcontributionsareidentical,while the exchangecontribu-
tions differ by a factor — 1. Hence,the differencein enegy
of thetwo statesequalstwice the exchangeontribution.The
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FIG. 5. Exchange contribution of state 1 (solid), state 2
(dasheg, state3 (long dasheg, andstate4 (dash-dotteg

exchangecontributionsfor the four pairsof statescalculated
in Sec.ll aredisplayedin Fig. 5.

We seethatthe exchangecontributionsare smooth,expo-
nentially decreasingcurves. Some jitter on the level of
1075 a.u.dueto numericalinaccuraciesan be observedat
very large R. However the exchangecontributionsclearly
showthe expectedexponentialdecreasevith distance Con-
sidering that the exchangecontributionis a very small en-
engy differencethat hasbeenextractedfrom two nearly de-
generatestates theseresultsindicate good accuracyfor our
calculationsall the way outto R=22 a.u.

At R=22 a.u.the exchangeenegies are of the order of
10> a.u.or less,while the total binding enegiesareof the
orderof 10~% a.u.(theonly exceptiorbeingthe secondstate
that hasa binding enegy 7.6x107> a.u.and an exchange
enegy 10 ¢ a.u.). Hence,for R=22 a.u.the exchangeef-
fectsgive a negligible contributionto the total enegy. In the
following sectionswe shall,thereforejgnoreexchangevhen
we developasymptoticformulasfor the potentialenegies.

B. Long-range interaction

In this sectionwe shall look at the contributionsto the
potentialenegy arising from first-order perturbationtheory
in the electrostatiatom-atomnteraction.Sincethe molecule
dissociatednto neutralatomsthe interactionwill be of di-
pole, and higher multipole, type. For the molecularground
state dissociatingnto two ground-stat@tomspossessingo
dipole moment,the enegy correctionfrom first-orderpertur
bationtheoryvanishesThe sameis true for hydrogenatoms
in the 2s state.We shall, however seethat throughthe de-
generacywith the 2p state afirst-orderenepy shift appears.
In fact, dueto the previouslymentionedmixing inducedby
theinteraction the asymptotionolecularstategurn out to be
linear combinations of the different symmetry-adaptedho-
lecularorbitals.

At large internucleardistanceghe interactionof the two
atomsmay be treatedas a perturbation,H 0= H atoms™ V,
whereV canbe expressedn a multipole expansion
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min{ly I}

x X

m=—min{l, I}

(10[1yml,—m)Y) (1) Yy, (),
(7)

whereY), is the sphericalharmonicand(Im|!,m;,!,m,) are
Clebsch-Gordaroefficients.The leadingtermin the expan-
sion (7) is I=2, giving a contributionproportionalto 1/R3,

1
V3:§(r1'r2_32122)- 8)

The next contribution comesfrom [ =4, giving a contribu-
tion proportionalto 1/R5. In the basisof the four degenerate
'S4 or 33, molecular orbitals |2s2s), [2p°2p°),
(UV2)(12s2p%) —|2p%2s)), and  (U\2)(2p*2p~)
+]2p~2p*)) thefirst-orderperturbatiormatrix (without ex-
changg¢uptol=4is

0 -18R® 0 —9\2/R3
N -18R3®  864R® 0 4322/R®
V= 0 0 18R 0
—9\2/R® 4322/IR® 0 432R5

9

Diagonalizatiorof V givesthe four asymptoticeigenenagies

9.6(\/864+R*-12\6) 96 . 648
h __

R R R’

1=

18

Eszg,

96(\864TR*+126) 96 648
Ba= R "R
(10

and the correspondingasymptotic eigenfunctionsare, to
leadingorder[thatis, if termsproportionalto 1/R5 in Eq. (9)
areneglected|
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FIG. 6. Numericalenegiesafterremovingthe exchangecontri-
bution (crosses comparedto asymptoticenegies from first-order
perturbationtheory (lines).

11)= i|2323>+ iIZJO"ZJ@"H i(|2x7+210‘>
V2 V3 V12
+[2p~2p™)), (11)

1
|2)= E(|2p°2p°>— 2p"2p)~[2p"2p™)),

1
3)= —=(|2s2p%) —[2p°2s)),

V2

14)= " |2525) — = |2p%2p%)— ——(|2p*2p")
% 73120°2")~ 5 (12p"2p
+]2p~2p™)).

In Fig. 6 the asymptoticexpressiondor the enegies are
comparedo the numericaldataafter removingthe exchange
enepgy asexplainedn Sec.lll A. We find thatthe asymptotic
enegies accurately join the numerical results at R=22.
Hence,our calculationin combinationwith the resultsin [7]
gives the molecularenegies all the way from R=0 out to
nuclearseparationsvherefine structureand Lamb shift be-
comeimportant.

IV. CONCLUSIONS

We have calculatedthe enegies and widths of the four
34 andthe four 3% statesasymptoticallyconveging to
the enegy —0.25 a.u., characteristicof the n=2,n"'=2
atomic states.For short (R<6 a.u.) internucleardistances,
our resultsagreewell with thoseof SanchezandMartin [7].
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We are not awareof any previouscalculationof thesestates
for larger internucleardistancesWe havecalculatedanalyti-
cally the asymptoticenepies of thesestatesin first-order
perturbationtheory From our numericaldatawe extracted
the exchangeenegy and we concludethat it is lessthan
10 % a.u.for R>22 a.u.

In a future work we will include the effects of spin-orbit
couplingandthe Lambshift in our asymptotidormulas.This
will allow us to extendour calculationsof the collisional
quenchingof the H(2s) stateat finite temperatureglarger
thana few kelvin) [8] into the regimeof ultracoldcollisions,
relevantfor Bose-Einsteircondensatiorn hydrogen.
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