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This paper presents a distorted-wave generalization of the S-matrix version of the Kohn variational principle
developed by Zhang, Chu, and Miller [J. Chem. Phys. 88, 10 (1988)]. For scattering in the presence of a
long-range interaction, the large-r asymptotic solution to the Schridinger equation is built into the Kohn
variational principle order by order in an effort to accelerate the convergence of the short-range square
integrable part of the basis-set expansion. The improvement in the rate of convergence is demonstrated by
applying the method to a long-range model potential. Multichannel scattering is discussed.
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L. INTRODUCTION

Recent interest in low-energy scattering [1] in the pres-
ence of a long-range interaction has motivated the develop-
ment of methods for computing phase shifts [2—4] through
use of asymptotic effective range expansions [5]. The present
study, while applicable in the zero-energy limit, is motivated
by the desire to calculate phase shifts when the energy is too
high to apply effective range formulas, but too low to use
perturbative expansions. The method, which is a distorted-
wave generalization of the complex Kohn variational prin-
ciple developed by Zhang, Chu, and Miller [6], is applied to
single channel potential scattering. The eventual objective is
the construction of rapidly convergent approximations to
scattering wave functions in the multichannel case where
standard propagation algorithms are no longer effective. The
basic idea is to incorporate the large-r asymptotic solution to
the Schrodinger equation into the Kohn variational principle
in such a way that the convergence of the short-range square
integrable (12) part of the basis set expansion is accelerated.
The present work shows that the large-» asymptotic behavior
can be systematically incorporated to arbitrarily high order
by adding well-behaved “convergence acceleration func-
tions” to the basis set. Plane waves and Coulomb waves are
used as examples to show the order by order improvement in
the convergence rate of the L? basis set. In order to further
demonstrate the acceleration procedure, the method is ap-
plied to a model potential that falls off as r—* at large dis-
tances, which is a case that arises in charged particle scatter-
ing by a neutral polarizable target. The paper concludes with
a brief discussion of the application of the convergence ac-
celeration procedure to multichannel scattering.

H. DISTORTED-WAVE THEORY

This section develops a distorted-wave approach to poten-
tial scattering in the presence of a long-range interaction.
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Interaction potentials that fall off as an inverse power of r at
large distances from the scattering center are considered. The
analysis begins with the partial-wave Schrodinger equation

d? I(I+1)

2’;2"*']‘2_[](")_7_‘ u,(r)=0, 2.1)

and assumes that the long-range part of the potential has the
form

2 20
U(r)=%;- V(r)~§1 ar™*, row,.  (2.2)

A formal partial-wave solution u,;(r) can be constructed by
looking for a large-r expansion of the form

ul(r)~—exp(—ikr) 2 1) r™"*
=
+8, exp(+ikr) Y, FSE) iy, (2.3)
n=0 ’

The Coulomb phase parameter

a;
v=—

2% 2.4)

is necessary when a;# 0. The asymptotic expansion coeffi-
cients f {7’ for n>0 provide a distorted-wave generalization
of the standard method for short-range potentials, which in-
cludes only the n=0 term of the expansion (2.3) in the basis
set. Putting (2.3) into (2.1) and equating coefficients of like
powers of r yields the recursion relation
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[a,x2ik(nxiv+1)] f§§l1+l\2,0 areaf S50\

+I{I+ 1)~ (nxiv)(nxiv+1)] f(+) (2.5)

for the distortion coefficients £ 1,71 . The zeroth-order coeffi-

cients

(= (hik/p) " Pexpli(o{™F w27 vIn2k)], (2.6)

where

o F=arg[[(I+1%iv)], (2.7)
have been chosen to be consistent with the normalization
convention used by Zhang, Chu, and Miller [6]. The higher
order coefficients are determined from (2.5). The first two
are

fg,f)=(;2:-£)[a2+l(l+1);iv(1iiV)] i, @238
and
fﬁ):(%) {lax+1(1+1)—(1xiv)(2=in)] £i7

+ (253 fg,:()):)}' (2.9)
The next step incorporates the large-r asymptotic behav-
tor deduced above into the basis set. A basis function (or
functions) is sought that (1) has a large-r asymptotic expan-
sion whose first NV terms agree with the exact large-r expan-
sion (2.3), (2) remains well-behaved when r is small, (3)
does not have spurious singularities which slow down the
convergence, and {4) leads to tractable matrix element inte-
grals. One possible choice uses the incomplete y function

(ar)n+l+1+w

yin+l+1lxiv,ar)= {Fi{n+l+1xiv,n+1

FET e

+2xjy,~—ar) (2.10)

as a “cutoff function,” where o is an arbitrary nonlinear
variational parameter. The functions

N
)=2, fI5 &R0, @.11)

where

yin+l+1xiv,ar) exp("'tkr)
T'(n+i+1xiv) prEiv

2= ()= - (2.12)

are added to the basis. The large-r asymptotic formula
yn+l+1xiv,ar)=T(n+1+1xiv)
+0(—ar)"*!*exp(—ar))
(2.13)
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can be used to show that the combination —hg_)(r)
+S; h§+)(r) has a large-r asymptotic expansion whose first

* N terms agree with (2.3). The small-r convergent expansion

-]

(‘—I)k (ar)n+l+liiv+k
+1xq =
y(n+l+1xiv,ar) kzo k' (n+l+1zxiv+k)

(2.14)

can be used to show that the functions h{)(r) are analytic
functions of » at r=0. When the Coulomb parameter v is
zero, the cutoff function (2.10) simpliﬁes to

n+l

y(n+i+Lar)=(mn+i)}t{1—exp(— ar)z (a r)'".

(2.15)

“This reduces to the cutoff function used by Zhang, Chu, and

Miller when #=1[=0. Matrix element evaluation is particu-
larly simple when the cutoff function takes the form (2.15).

The distorted-wave theory presented here differs from
more standard treatments (see, for example, [7]) that require
matrix elements of the short-range part of the potential taken
between states that are distorted by the long-range part of the
potential. The present approach should be more efficient if
the large-r expansion of the distorted waves used to calculate

~ matrix elements of the short-range part of the potential in

standard treatments does not agree with the exact large-r
expansion (2.3). In the more general case of multichannel
scattering, the distortion coefficients f =) are still deter-
mined from the Schrodinger equation as above, but will de-
pend on the internal coordinates of the target.

HI. RATE OF CONVERGENCE THEORY

This section provides a brief overview of a theory of con-
vergence rates for Laguerre polynomial expansions. The
theory has been rigorously applied to bound states [8] and
contains many features that should also be applicable to scat-
tering states. The analysis begins with the formal expansion

uz(r)=mE=0 Cim Pim(r)

3.1
of the partial-wave solution u,(r) in the basis
¢,,m(r)=(ar)l+lexp( -—rar/2)L£,{‘)(ar), (3.2)

where the Laguerre polynomials Lf,:‘) are defined by the gen-
erating function

(l—z)"x_lexp{—(ﬁf—)]= Zo LMz, (3.3)

11—z
and the coefficients c; ,, are given by the integral

! - /
Cz,m:'—_——"r{(mm_i;f_i_ 1)f0 G1m(r)u(r)(ar)* 272 dr.
(B4

The functions ¢, ,,, which are cé]led Sturmians, have been
chosen for their excellent numerical Stability properties as
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the number of basis functions is increased. Application of the
theory to other basis sets built from classical orthogonal

polynomials {see [9] for bound states) should be similar to -

the discussion presented here.

The expansion (3.1) cannot converge in L? because
u,(r) is not square integrable. The coefficients ¢, ,, are nev-
ertheless well defined because the integral (3.4) is conver-
gent. The expansion (3.1) provides a discrete L? representa-
tion of the continuum [10]. In some cases, a pure Coulomb
potential for example, the L? representation can be shown
[11] to possess conditional pointwise convergence that is
very slow. In practice, however, we would like to have an
expansion which is rapidly convergent in L2

This goal can be achieved by using the modified expan-
sion

uz(r>=—h§‘>(r>+§lh§+’<r>+go Eim Brm(r) (3.5)

~

where the “convergence acceleration functions” h(+)(r) in
(3.5) have the property that the coefficients of the formal
expansion

-]

= 2 el () (3.6)
obey the condition
Crm~ =i +8; ¢l 3.7
for m large. The coefficients
51,m=cl,m+cg;n)-—§,c§j") (3.8)

will then decrease fast enough for large m to make the sum
over m in (3.5) rapidly convergent in L2. The functions (3.6)
are reminiscent of the L? approach to scattering developed
by Heller and Yamani [12]. In the present case, however, the
L? expansions (3.1) and (3.6) are used only as a formal tool
to understand the convergence rate of the Sturmian part of
(3.5). It will be shown that the condition (3.7) can be met by
using the acceleration functions (2.11) introduced in the
distorted-wave theory of the previous section. The functions
(2.11) for N=0 are normally used as the starting point for
discussions of the Kohn variational principle. In the present
case, however, the acceleration functions are actually a con-
sequence of a general rate of convergence theory, and the
effect that increasing N will have on the convergence rate
can be analyzed. In order to understand the convergence rate
of the Sturmian basis set, it is necessary to determine the
large—m behavior of the expansion coefficients ¢;,, and
c! im =) The analysis for the c{%) will be presented first. Fol-
lowing [13], define a generatmg function

o

g )= 2 1) " 3.9)
m=0
where
-+ - m! +
cg;n)—a)‘ l(m+)\)! 15;,,’ (3.10)
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The farge-m behavior of c{;), and, therefore, the rate of
convergence of the Sturmian expansion, is controlled by the
singularities of ggi)(z) closest to the origin in the complex-z
plane [13]. Equations (3.2), (3.3), (3.6), and the orthogonal-
ity relation for the Laguerre polynomials can be used to ob-
tain an explicit formula for the generating function
g$*(z). The result is

g ) =(1=2)" "1 H{)(s), (3.11)

where H{*(s) is the Laplace transform

H§i’(s)‘=f AR (rexp(—sr)dr (3.12)
0

and
s=;—((—ij—_—3- . (3.13)
Using (2.11) and (3.12) yields
N it iy
HP)=N 2 pomsany ) PR,
(3.14)

where

F§f,)(s)=(s:ik)‘“*”zFl(H Ln+i+1xivn+i+2

i
*iv,—
‘s¥ik

The hypergeometric function »F(a,b;c,{) is an analytic
function of ¢ except for singularities at /=1 and {=o0, It
follows that the H\™)(s) are analytic functions of s except
for singularities at s=*ik and s=— a=*ik. The singulari-
ties at s= =ik are the physical singularities from the large-r
behavior of the partial-wave solution u,(r) which we are
trying to model. The singularities at s= — o= ik are spurious
singularities which come from the (— ar)"*'*#exp(—ar)
piece in the large-r behavior of the cutoff function [see Eq.
(2.13)]. If the scale factor a in (3.13) is chosen to be equal to
twice the value of the nonlinear variational parameter « in
(2.12), then the spurious singularities will be located in the

complex z plane at
2a
z=1xil—| ,

k

(3.15)

(3.16)

and with an appropriate choice of @ can be pushed far
enough away from the origin so that they do not affect the
convergence rate. The physical singularities that we are try-
ing to cancel will then control the convergence rate. These
singularities are located on the unit circle in the complex z
plane at

. aFik
z=25=—( ) . 3.17)

atik
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The transformation theory of the hypergeometric series can
be used to show that the expansions of the H Y—’)(s) about the
singularities (3.17) have the form

N —
. L T(\Fiv—n—1I)
HF(s)= X fi

b GRS + (analytic function).

(3.18)

The expansions of the generating functions about the singu-
lar points zj can be derived from (3.18). They are

gi@= 2 ALY =), (3.19)
=
where
" , nto+h
Ag';)= 20 ff;l)_m I'(m—n—o0)
m=
(aiik)cr+n—m
X (1_Z§)a+)\+n+l (320)

with o=I1—X=ip. The method of Darboux (see [13,14] pp.
532-535[15], pp. 116—122 and 145-146 [16], pp. 309-315
and 321) can be used in combination with the asymptotic
formula

o+n (—n" o _
( )=F(—_U;‘T)m 1[1+0(m 1)]

(3.21)
m

for binomial coefficients to deduce the asymptotic estimate

N
o+n . )
Ig:'_ﬂ).:n}::o Ag;)( m )(_Z()—)a-+n—m+0(m—o-—N—2) .
(3.22)

Equation (3.21) shows that each term of the asymptotic ex-
pansion (3.28) is smaller than the preceding term by a factor
of m~1. It follows from (3.8), (3.22), and (3.28) that
Crm=0(m™I"N="2) (3.29)

for m large if §,=8;. In an actual calculation, of course,
S; will differ slightly from S;, but the variational principle
will ensure that the error which arises from this difference is
of the same order as the error which comes from truncating
the expansion in (3.5). Section V contains a numerical dem-
onstration that the asymptotic expansion (3.22) agrees well
with the exact coefficients for both plane and Coulomb
waves, thus confirming the hypothesis that the condition
(3.7) can be met by using the acceleration functions (2.11).
Equation (3.29) shows that the asymptotic behavior of the
coefficients ¢, ,, is improved by a factor of m ™! when N is

(_za)l~)\—iv+n—m+sl AS;)
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The asymptotic c{>, are found from (3.10) and (3.22).

The large-m asymptotic analysis of the ¢; ,, is similar. The
Laplace transform Hﬁi)(s) introduced in (3.12) is replaced
by

Uis)= J:rx_’_lu,(r)exp(—sr)dr. (3.23)

Because the u,;(r) are not known explicitly, the behavior of
U,(s) in the neighborhood of the points s= *ik cannot be
deduced by invoking properties of known, well-studied func-
tions, and theorems on the asymptotics of the Laplace trans-
form must be used (see [15] Theorem 13, p. 322 or [17]
Example 4.6.1, p. 134). The needed result, which follows
from the large-r expansion (2.3) as a consequence of these
theorems, is

U(s)=U{(s) + (analytic function),  (3.24)
where
“ C(A—iv—n—10)
() (g} = (-) -
Ui ~= 2 f13) s . (329

= T(N+iv—n—1)
U§+)(S)~Sl n§=:0 fﬁ,) Grih (3.26)

The rest of the analysis goes through as for the cgf,). The
résult is

m!

A—-l I
(m+x)Lem e

C[7m=a -

(3.27)

where

[—=\+iv+n ! )
(_Z(-)*-)l—)\+zv+n—m . (3,28)

r

increased by 1. Therefore, we expect that an increase in the

order N of the h{:) defined in (2.11) will lead to a decrease

in the number of Sturmian functions ¢;,, needed in (3.5).
The advantage is that we know the values of the distortion
coefficients f ﬁ) , but the unknown coefficients ¢, ,, need to
be determined variationally. A second advantage is that by
solving the large-r part of the problem exactly, a more uni-
form pattern of convergence is obtained. This is especially
appealing for an unbounded variational principle, such as the
Kohn principle, since it is often difficult to determine the
stationary points that yield the approximations to the solu-
tions which the trial function is attempting to model. A third
advantage is that a single nonlinear parameter is used to de-
scribe the full configuration space. This is possible because
the Sturmian basis does not need to handle the large-r part of

. the wave function since it is already put in by the conver-

gence acceleration functions.
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IV. VARIATIONAL METHOD

The following notational changes will be made in order to
simplify the discussion: the / dependence of each partial
wave is suppressed and p,g=1{0,1} is used to designate the
respective incoming and outgoing solutions. The variational
S-matrix element is then given by [6]

i

§=E(B—c2/p), 4.1)
where
B=Mq—MIM~'M,, 4.2)
C=M,;—MM~'M,, 4.3)
and
D=B*=M,;-M"M M, . (4.4)

As is emphasized in [6], the symmetry between the incoming
function hg—) and the outgoing function hg” allows the
number of individual matrix elements that need to be com-
puted to be minimized. These matrix elements are defined by

M, ,=(h'P|H—E|n'?), 4.5)
(M ) =(bul|H—E[nD), (4.6)

and
(M) ={Sn|H=E| ;) . (4.7)

Equations (2.11), (4.5), and (4.6) can be used to show that

N N
Mp=2 3 FOFeWIH-Elg®)  (43)

and

N

(M )= Zo F b lH-E|g?) .

4.9)

For multichannel scattering, the individual matrix ele-
ments (4.5)—(4.7) become matrices with respect to the inter-
nal quantum numbers, and the distortion coefficients f ﬁ)
become functions of all the internal coordinates as well as
the projectile angular variables. This differs from the
distorted-wave approach suggested by Zhang and Miller [18]
which requires a multichannel distortion potential that intro-
duces modifications to the basic formulas (4.5) and (4.6). In
the present approach, instead of dealing with distortion po-
tentials that are normally numerical functions of the channel
radial coordinate r, we have analytic functions in the full
configuration space which are exact solutions to the large-r
Schrodinger equation for each channel. These analytic func-
tions have the advantage that they allow for transformations
to coordinate systems that are better suited for describing the
composite system in the interaction region.
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TABLE I. Relative error in asymptotic expansion coefficients for
plane waves (I=4; k=0.5; a=2).

m N=0 N=1 N=2 N=3 N=42
5 1x107% 7x10°! 2x107! 3x107% 8x1071¢

10 5%107! 9x1072  1X107%2  4x107% 3x1071S
15 3x107° 2x107° 3x107!' 2x107% 2x107®3
20 4x107!  5x1072  2x107*  4x107* 1x1071®
25  5x10°Y  3x107!  3%107%  1x1073  1x10712
30 3x10°!  4x107? 7X107* 8x107% 2x1071®
35 9x107? 6X107? 7x107% 2x107¢ 2x10712
40 3x107! 3x1072 7x107* 2X107% ex107P3
45  2X107%  2X107% 3x1073 7x107% 2x107R2
50 3x107!  2x107? 7X107* 6x107°

2x10712

#Apparent loss of accuracy is due to the decreasing magnitude of
the coefficients as the value of m is increased.

V. NUMERICAL RESULTS

This section provides numerical illustrations of the con-

- vergence acceleration process. Exact expansion coefficients

¢, for spherical Bessel functions and Coulomb wave func-
tions are compared with large-m asymptotic formulas. The
convergence acceleration process is then applied to a simple
potential scattering problem.

Consider first the expansion coefficients ¢, ,, defined by
(3.4) when u,(r) is the Coulomb wave function

u(ry=r"*tlexp(ikr) F(I+1+iv,20+2,—2ikr),
(5.1)

which reduces to a spherical Bessel function when y=0. The
exact coefficients c;, can be obtained from the Laplace
transform

Uys)= fowr)"l_lu,(rr)exp( —sr)dr

M e at L1tk
RSk : v s—ik

(5.2)
For A=2[+1, it is easy to show that
Q! [s—ik tv 5
Uis)= IO\ s+ %) (5.3)

which leads to

m! (21+1)! Qa)*! [(a—ik|”
Com T m+ 214 ) (i) a+ik

m +i+i
x3 (" ’")(za‘v-m(za)*" .
n=0 n

(54)

m—n+l—iv

m—n

Table I compares the asymptotic coefficients (3.7) with the
exact coefficients (5.4) for the plane-wave case when v=0,
For m=35, the difference between the asymptotic and exact
coefficients decreases as N increases, indicating that the
long-range centrifugal potential is controlling the conver-



[

TABLE IL. Relative error in asymptotic expansion coefficients for
Coulomb waves (I=0; k=0.5; a=2).
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TABLE 1. Relative error in tand, for repulsive potential (5.5)

with A=4 and k=0.5 a.u.

m N=0 N_=1 N=2 N=3 --N=4

5 8% 107! 2x107P  3x1072  4x1072  7X107% -
10 3x107'  5x107%2  4x107% 3x1073  1x1073
15 2x107!  3%x107%  4x107?  4x107* 2x107*
20 8X107} | 4x107? 2x107%  1x1073  4x107*
25  1x107!  7x107%  3x10™* 1x107* 2%x107¢
30 81072  7x107?  4x107* 3x107%  §x107¢
35 1x107! 1x107%  8X10™* 4x107° 2x1076 .
40  7X107?  3x1073  9x107% 2x107%  4Xx107°¢
45 3X107% 5%107%  4%x107* 6x107% 5x107¢
50 6x107%2 1x1073 6x1075 9x107% 3x107¢

gence rate of the Sturmijan expansion. When N ==/, the recur-
sion relation (2.5) terminates and the L2 basis set converges
exponentially fast. Table IT shows the same comparison for
the Coulomb case when v=1/2k. In this case, the recursion
relation never terminates, so the L basis set will never con-
verge exponentially. However, we see from Table II that the
convergence rate can be significantly improved by going to
high values of N.

In practice, if the long-range coefficients @, in (2.2) are
zero for N> 1, then it would be more efficient to use the
incoming and outgoing Coulomb functions (or spherical
Hankel functions if »=0) multiplied by the zeroth-order cut-
off function (2.15). The distorted-wave formalism of Sec. II
will therefore be illustrated by an example for which the
a, are nonzero. Many theoretical studies [6, 19-21] have
been conducted on the atiractive and repulsive exponential
potentials

V(r)y=xexp(~—r) . (5.5)
The present work performs a similar study on a potential that
behaves like (5.5) at short distances, but has a long-range
r~* tail. A simple choice is

}\-’

V(r)=(i)\)7—<;,x—r)‘ : - (5.6)
B *exp(—r), r—0
AR F-—00’

(5.7)

In particular, we choose A =4, a case that arises in charged
particle scattering by a neutral polarizable target. Tables III
and IV illustrate the kind of improvement in the convergence
rate that can be achieved for this potential. The results, which
are for k=0.5 atomic unifs, indicate that the convergence
acceleration procedure usually yields a more accurate phase
shift for a given number of basis functions. There are, how-
ever, instances where an increase in N causes a decrease in
the accuracy of the phase shift. For example, in the M =2,
N=35 entry of the top part of Table IIl, the relative error
looks anomalously small when compared to its neighboring
entries. Since the unitarity of the S matrix (measured by the
imaginary part of the numerical X matrix) generally im-

proves with increasing M and N, exceptional accuracy for

a=1.0
M N=0 N=3  N=4 N=5 N=6
0 8%1072 5%x107* 5x107%  5x1073 1x1072
1 5%107% ©3x1074. 5%x107°  7x107®  2Xx1073
T2 C8X107* 4x107* 2X107*  3x107%  5x107°
3 6X107*  4x107° 6X107° 4X107% 7x107°¢
4 1X107% "1x1075 2x107%® 6%10°% 1x10°%
5 1x107%  7x10°% 2x1077 2Xx10"%  2x107Y
a=2.0
M N=0 N=3 N=4 N=5 N=6
S50 1X1077 0 6x107* 3X107° 7X107°  1x107°
6 6x107%  2x107* - 8x10™7 1x10™5 3x1076
7 2x107* 2x107° 9x1075 _ 4x1077 2x1076
8 4%107% 1x107%  6x107¢ 5%x1077  1x107¢
9 3x107%  8x107¢ 2x107¢ 9x107% 5x1077
10 5x107%  2x107¢ 41077 9x107%

4x1077 ‘

small M and N can usually be regarded as fortuitous. In fact,
the unitarity of the § matrix for the anomalous M =2, N=35
entry is only good to four digits, so at least one of the digits
of agreement for the phase shift is actually noise.

V1. CONCLUSIONS

As emphasized by Zhang and Miller [18], the S-matrix
version of the Kohn principle requires mostly energy inde-
pendent matrix element evaluations, followed by standard
linear algebra computations. The exchange interactions
which plague coupled channel differential equations are eas-
ily handled by the basis sets, and the Kohn anomalies which
arise in the K-matrix version of the Kohn principle are easily
avoided. In the present work, we emphasize that all of the
advantages of the original formulation [6] of the S-matrix
version of the Kohn variational method are retained.

TABLE IV. Relative error in tand, for attractive potential (5.5)
with A=4 and k=0.5 au.

a=1.0
M N=0 N=3 N=4 N=5 N=6
5 3X107%  8x107% 1x107°  1x107° 1x107°
6 3%107%  9x107% 3x107% 2x10°¢ 2x10°¢
7 1X107%  3x107%  3x107° 2x1077 2x1077
8 7x1076 7x1077  2%x107% 3x107% 1x1078
9 31078 7x1077 1x107%  3x107° 3x107°
10 1x107% 3x1077 2x107% 2x10°° 2x107°
; a=2.0
M N=0 N=3 N=4 N=5 N=6
5 1x1073  2x107% 1x107% 1x107* 4x1076
6 2x107%  8x107% 3x107° 3x107° 9x107’
7 4%X107* 2%x107*  1x107° 3%107¢ 2x107¢
8 8x107* 8x107% 2x107°% 5x1077 2x10°¢
9 9x107% 3x107% 8x107% 3%x1077 1x1076
10 4x107% 8x107% 2x107°® 5%10°% 7x1077
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The motivation of the present work is to obtain rapid con-
vergence in the general case of multichannel scattering.
Since the computational effort for multichannel scattering
scales as the square of the product of target and translational
functions, it is highly desirable to keep the number of trans-
lational L? functions as small as possible. We have shown in
the special case of potential scattering how to incorporate
long-range distortion into the non-L? basis functions in such
a way that the size of the L? basis set can be reduced. The
extension to multichannel scattering should be straightfor-
ward, and is the subject of ongoing research.
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