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Previous calculations of low-temperature cross sections for collisions between spin-polarized metastable

hydrogen atoms are improved to include nonadiabatic radial and angular coupling at large interatomic sepa-

rations. The electrostatic dipole-quadrupole interaction produces nonadiabatic radial coupling between �2s ,2p�
and �2p ,2p� states, while the Coriolis interaction produces nonadiabatic angular coupling. Both of these

long-range contributions are handled in a space-fixed atomic gauge that is particularly convenient for a spin-

polarized system. The improved theoretical results are compared with an existing experiment.
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I. INTRODUCTION

An important prerequisite for achieving the goal of high-

resolution spectroscopy of metastable hydrogen is a detailed

understanding of the atomic collisions. Theoretical �1,2� and

experimental �3� studies of cold collisions between two spin-

polarized H�2s� atoms have been performed. Calculated trap

loss rate coefficients are about 2 or 3 times larger than the

experimental error bars and show little temperature variation

in a region where the experiment suggests that there may be

a significant decrease. The trap loss rate coefficient is a mea-

sure of the total collisional quenching efficiency and may

contain contributions from single and double excitation

transfer reactions and also associative and Penning ionization

reactions:

H�2s� + H�2s� → H�2s� + H�2p� , �1�

H�2s� + H�2s� → H�2p� + H�2p� , �2�

H�2s� + H�2s� → H2
+ + e , �3�

H�2s� + H�2s� → H + H+ + e . �4�

A recent investigation �4� of doubly excited autoionizing

states of H2 converging to the H�n=2�+H�n�=2� limit re-

vealed that significant nonadiabatic radial coupling occurs at

large internuclear separation R. This coupling originates

from a dipole-quadrupole interaction that yields nonzero,

R-dependent matrix elements between the �2s ,2p� and

�2p ,2p� states. The diabatic scattering formulation that has

been applied to this system �1,2� relied on a unitary transfor-

mation between atomic and molecular basis states that is

independent of R. Although this transformation is valid at

large internuclear separations, it cannot accurately account

for the molecular behavior at small R. Therefore, coupling to

the �2s ,2p� state, which vanishes at leading order in an ex-

pansion in inverse powers of R, was artificially assumed to
be zero for all R. In order to extend the diabatic formulation
to include the �2s ,2p� coupling, it is necessary to allow a

radial coordinate dependence in the transformation between
atomic and molecular basis states. The required transforma-
tion has been given previously and a modified diabatic basis
set was suggested �4�. In the present work, we employ the
modified basis set and the R-dependent transformation to see
whether the inelastic scattering cross sections may be
brought into better agreement with experiment �3�.

The scattering formulation used in our previous calcula-
tions �1,2� is another source of possible error that is investi-
gated in the present work. The centrifugal sudden or
coupled-states �CS� approximation �5� that was used assumes
that the orbital angular momentum of the nuclear motion is
decoupled from the internal angular momentum of the atoms.
This decoupling of angular momenta is equivalent to per-

forming the scattering calculation in the body-fixed frame

while neglecting the Coriolis interaction. It is also equivalent

to performing the scattering calculation in a space-fixed

frame while neglecting nonadiabatic angular couplings that

persist at large distances �6�. Improving the CS formulation

requires either �i� including the Coriolis coupling in a scat-

tering calculation in the body-fixed frame and then trans-

forming to the space-fixed frame to match to the appropriate

boundary condition or �ii� making a gauge transformation of

the scattering equations in a space-fixed frame that removes

all nonadiabatic angular couplings that may occur in the

separated atom limit �6�. Method �ii� has the advantage that

the polarization direction may be defined relative to a space-

fixed axis. This is particularly convenient for spin-polarized

systems and is the method followed here. This paper is or-

ganized as follows. In Sec. II, a general scattering formula-

tion is described that allows either method �i� or �ii� to be

applied along with the molecular to atomic gauge transfor-

mation that is needed to implement method �ii�. Sections III

and IV give the atomic basis sets and adiabatic potentials that
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are used in this work. Sections V and VI describe how the

nonadiabatic radial and angular couplings are included in the

calculations. Sections VII and VIII provide numerical results

and discussion. Comparisons are made with previous calcu-

lations and with an existing experiment.

II. SCATTERING FORMULATION

In order to describe the approach that will be taken to

include nonadiabatic coupling, it is necessary to review the

scattering formulation. Let r�1 and r�2 be the position vectors

of the two electrons with respect to the center of mass of the

nuclei and R� be an internuclear separation that is large

enough that the system is well approximated as two isolated

atoms. The scattering calculations may be performed in the

diabatic representation �7�, which uses a coupled-channels

expansion of the form

��r�1,r�2;R� � = �
n

�n�r�1,r�2;R� ��un�R� � , �5�

where ��n� is an orthonormal basis set of products of atomic

functions. This basis set is described in Sec. III. The

Schrödinger equation for the nuclear motion is

�−
1

2�
�R

2 − E	un�R� � = − �
m

Vnm�R� �um�R� � , �6�

Vnm�R� � = 
�n�r�1,r�2;R� ���Hel�r�1,r�2;R� ���m�r�1,r�2;R� ��� . �7�

In the adiabatic representation, the electronic Hamiltonian is

diagonalized for each R� with molecular eigenfunctions

�n�r�1 ,r�2 ;R� � and eigenvalues Vn�R� �:

Hel�r�1,r�2;R� � = �
i

��i�r�1,r�2;R� ��Vi�R� �
�i�r�1,r�2;R� �� . �8�

Substituting �8� into �7� yields

Vnm�R� � = �
i


�n�r�1,r�2;R� ����i�r�1,r�2;R� ��Vi�R� �

�
�i�r�1,r�2;R� ���m�r�1,r�2;R� ��� . �9�

Small energy corrections such as the fine structure and/or

Lamb shifts may be conveniently included at long range by

transforming the atomic basis �n to the total angular momen-

tum representation �n to yield

Vnm� �R� � = �
ijk


�n�r�1,r�2;R� ����i�r�1,r�2;R� ���

�
�i�r�1,r�2;R� ���� j�r�1,r�2;R� ��V j�R� �

�
� j�r�1,r�2;R� ���k�r�1,r�2;R� ���

�
�k�r�1,r�2;R� ����m�r�1,r�2;R� ��� . �10�

The above formulation does not specify whether the coordi-

nate system is body fixed or space fixed. If it is assumed to

be body fixed with the z axis along the direction of R̂, then

the relative nuclear orbital angular momentum l� will be per-

pendicular to the z axis and the potential matrix elements �9�
and �10� will be independent of l and the projection quantum

number ml will be zero. Because l̂2 operates on the angular

part of the body-fixed wave function, the usual centrifugal

potential becomes the Coriolis potential �5�

VC =
1

2�R2
�Ĵ2 + ĵ2 − 2Ĵz ĵz − Ĵ+ ĵ− − Ĵ− ĵ+� , �11�

where J� = j�+ l� is the total angular momentum for a system

with total internal angular momentum j� and where Ĵ± and ĵ±

are the usual ladder operators. Matrix elements of VC may be

expressed in the total angular momentum � representation as

VC��,�� =
1

2�R2
�J�J + 1� + j�j + 1� − 2�2� , �12�

VC��,� ± 1�

= −
1

2�R2
J�J + 1� − ��� ± 1�j�j + 1� − ��� ± 1� ,

�13�

where � is the body-fixed projection of both J and j. The CS

approximation is made by neglecting the off-diagonal matrix

elements �13� and assuming the nuclear orbital angular mo-

mentum is conserved with all of the centrifugal barriers that

may occur for a given J in Eq. �12� replaced by a single

barrier �5�. These approximations may be systematically re-

moved by adding the exact terms �12� and �13� to the poten-

tial coupling �10� and solving the resulting coupled-channels

Schrödinger equation.

An alternative approach �6� is to assume that R� is aligned

along the space-fixed z axis. The electronic Hamiltonian �8�
may be written

Hel�r�1,r�2;R� � = TM�R̂�Hel�r�1,r�2;R�TM
−1�R̂� = �

i

TM�R̂�

���i�r�1,r�2;R��Vi�R�
�i�r�1,r�2;R��TM
−1�R̂� , �14�

where TM�R̂� is a single-centered rotation operator that gen-

erates electron rotations about the nuclear center of mass.

The diabatic scattering formulation will remain valid if it

includes a gauge transformation un�R� �→TA�R̂�un�R� �, which

removes nonadiabatic angular couplings that persist at large

R in the molecular gauge �6�. The operator TA�R̂� is a two-

centered rotation operator that generates electron rotations

about the atomic centers. The gauge transformation is an

R� -dependent unitary transformation that redefines the basis

states

�n�r�1,r�2;R� �� = TM�R̂��n�r�1,r�2;R��

→ TM�R̂��n�r�1,r�2;R��TA
−1�R̂� �15�

and replaces the potential matrix �9� by
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Vnm�R� � = �
i

TA�R̂�
�n�r�1,r�2;R����i�r�1,r�2;R��Vi�R�

�
�i�r�1,r�2;R���m�r�1,r�2;R���TA
−1�R̂� , �16�

where the basis functions � and � are now independent of R̂.

The action of TA
−1�R̂� on the atomic basis states induces a

rotation about the atomic centers that exactly compensates

for the rotation induced by TM�R̂�, allowing the basis states

to be quantized along the space-fixed z axis for arbitrary

impact parameter �6�. The CS approximation is arrived at in

the space-fixed frame by neglecting this angular coordinate

dependence and setting the rotation operator to unity. This is

equivalent to performing the scattering calculation in the mo-

lecular gauge and neglecting the long-range nonadiabatic an-

gular coupling. The unitary matrix element

Unm�R� � 
�n�r�1,r�2;R����m�r�1,r�2;R�� �17�

is a projection coefficient computed in �4�. The radial coor-

dinate dependence contained in this matrix element is needed

to include the nonadiabatic radial coupling between the

�2s ,2p� and �2p ,2p� states. Going beyond the CS approxi-

mation and also including the nonadiabatic radial coupling,

therefore, requires a full account of the nuclear coordinate

dependence of each term in Eq. �16�.
For cold collisions, the atomic fine structure and Lamb

shift splittings are important and it is more convenient to

perform the scattering calculation in the � representation

where the atomic spin-orbit interaction is diagonal. In this

representation, the rotation operator T�R̂� may be written in

terms of a Wigner D matrix �6� so that Eq. �10� is replaced

by

Vnm� �R� � = �
ijk

�
�

D�n,�
jn ��,	,− ��D�,�m

jm ��,− 	,− ��V j�R�

�
�n�r�1,r�2;R����i�r�1,r�2;R���

�
�i�r�1,r�2;R���� j�r�1,r�2;R��

�
� j�r�1,r�2;R���k�r�1,r�2;R���

�
�k�r�1,r�2;R����m�r�1,r�2;R��� , �18�

upon application of the gauge transformation. In Eq. �18�, jn

is the total internal angular momenta of state n, whereas the

indices i, j, k, m, and n each refer to a state characterized by

a set of quantum numbers. This notation becomes rather

clumsy, so in the remaining sections the subscripts on the

states will be dropped and the difference between states will

be denoted by primes. The next section provides the details

of each of the representations used in this work.

III. ATOMIC BASIS SETS

The atomic basis set in the � representation described

above may be defined by the quantum numbers

�la ,ma , lb ,mb ,S ,
� where S and 
 are the total electronic

spin and spin projection along the z axis of the space-fixed

coordinate system. The electronic orbital angular momentum

and projection are denoted by la ,ma and lb ,mb for atoms a

and b, respectively. The � representation described above

may be defined by the set of quantum numbers

�la , lb , ja , jb , j ,�� where j�a= l�a+s�a, j�b= l�b+s�b, and j�= j�a+ j�b is

the total internal angular momentum with projection � along

the space-fixed z axis. Basis sets that are symmetric with

respect to inversion of the nuclei may be defined as

��� =
1

2�1 + �la,lb
�ma,mb

�
��la,ma,lb,mb� + ���lb,mb,la,ma��

��S,
� , �19�

��� =
1

2�1 + �la,lb
� ja,jb

�
��la,lb, ja, jb� + ���lb,la, jb, ja���j,�� ,

�20�

where ��= p�−1�la+lb and ��= p�−1�la+lb+1 with p= +1 �−1�
for gerade �ungerade� symmetry and = +1 �−1� for S

=0 �1�. The atomic states �19� and �20� are also assumed to

be symmetrized with respect to electron exchange when

computing overlaps with molecular states. The use of atomic

states that are symmetry adapted with respect to the inver-

sion operation R� →−R� allows the scattering calculation to be

partitioned into even and odd values of nuclear orbital angu-

lar momentum when proton exchange is taken into account.

For spin-polarized hydrogen collisions, the two atoms ap-

proach each other in a 3
u
+ molecular state of H2 with �

=
=1. Therefore, p=−1 for all of the symmetry-adapted

atomic states �19� and �20� needed to describe this system.

The basis set �20� is particularly convenient for performing

numerical calculations because the spin-orbit interaction is

diagonal in this representation. Previous calculations re-

stricted the basis set to only �=1 states �1,2� consistent with

the neglect of the Coriolis interaction. This restriction is

lifted in the present work as � is allowed to take on the

values 0 , ±1 , ±2, ±3. A total of 36 states are used in the

diabatic expansion. Quantum numbers of these states are

given in Table I.

A unitary transformation between the two atomic repre-

sentations �19� and �20� may be achieved using the identities

�la,lb, ja, jb, j,�� = �
LS

�
�


�L j S

� − � 

	�

la sa ja

lb sb jb

L S j
�

��j, ja, jb,L,S�1/2�− 1� j+��la,lb,L,�,S,
� ,

�21�

�L,�� = �− 1�lb−la−� �
ma,mb

2L + 1� la lb L

ma mb − �
	�ma,mb� ,

�22�

where �a ,b , . . . ,c���2a+1��2b+1�¯ �2c+1� and �¯� and

�¯� denote 3j and 9j symbols, respectively. The total elec-

tronic orbital angular momentum and its projection along the

z axis are defined by L� = l�a+ l�b and �=ma+mb. The atomic

basis sets used in this work are given in Table I and the
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matrix elements of the �↔� transformation in Table II. The
symmetry of the atomic and molecular states with respect to
reflection in the x-z plane introduces an additional phase fac-
tor �−1�L−� that is important when applying the gauge trans-

formation described in Sec. VI. This phase factor requires
that the atomic states �18, �28, and �34 be defined as the
negative of �11, �5, and �19, respectively.

IV. ADIABATIC POTENTIALS

There are 64 atomic states corresponding to n1

=n2=2. The electrostatic coupling between these states

may be calculated using a multipole expansion of the

form

Vel�r�1,r�2;R� = �
l,l�

�
�

A
l,l�

�
r1

l r2
l�Y l,��r̂1�Y l�,−��r̂2�R−l−l�−1,

�23�

where

TABLE I. Atomic basis sets.

� representation � representation

n �� la ma lb mb S 
 �� la lb ja jb j �

1 1 0 0 0 0 1 1 1 0 0 1 /2 1 /2 1 1

2 1 1 0 1 0 1 1 1 1 1 1 /2 1 /2 1 1

3 −1 0 0 1 0 1 1 −1 1 1 1 /2 3 /2 1 1

4 1 1 1 1 −1 1 1 1 1 1 3 /2 1 /2 1 1

5 1 1 0 1 1 1 0 1 1 1 1 /2 3 /2 2 1

6 −1 1 0 1 1 0 0 1 1 1 3 /2 3 /2 3 1

7 1 1 1 1 1 1 −1 −1 0 1 1 /2 1 /2 1 1

8 1 0 0 1 1 0 0 1 0 1 1 /2 3 /2 1 1

9 −1 0 0 1 1 1 0 −1 0 1 1 /2 3 /2 2 1

10 1 1 1 1 1 1 0 −1 1 0 3 /2 1 /2 2 2

11 1 1 0 1 1 1 1 1 1 1 3 /2 1 /2 2 2

12 −1 0 0 1 1 1 1 1 1 1 3 /2 3 /2 3 2

13 1 1 1 1 1 1 1 1 1 1 3 /2 3 /2 3 3

14 1 0 0 0 0 1 0 1 0 0 1 /2 1 /2 1 0

15 1 1 0 1 0 1 0 1 1 1 1 /2 1 /2 1 0

16 −1 0 0 1 0 1 0 1 1 1 3 /2 3 /2 1 0

17 1 1 1 1 −1 1 0 1 1 1 3 /2 3 /2 3 0

18 1 1 0 1 −1 1 1 1 0 1 1 /2 1 /2 0 0

19 1 1 0 1 1 1 −1 −1 0 1 1 /2 1 /2 1 0

20 −1 0 0 1 −1 1 1 −1 1 1 1 /2 3 /2 1 0

21 −1 0 0 1 1 1 −1 1 0 1 1 /2 3 /2 1 0

22 −1 1 1 1 −1 0 0 −1 0 1 1 /2 3 /2 2 0

23 1 0 0 1 0 0 0 1 1 1 1 /2 3 /2 2 0

24 1 0 0 0 0 1 −1 1 0 0 1 /2 1 /2 1 −1

25 1 1 0 1 0 1 −1 1 1 1 1 /2 1 /2 1 −1

26 −1 0 0 1 0 1 −1 −1 1 1 1 /2 3 /2 1 −1

27 1 1 1 1 −1 1 −1 1 1 1 3 /2 3 /2 1 −1

28 1 1 0 1 −1 1 0 1 1 1 1 /2 3 /2 2 −1

29 −1 1 0 1 −1 0 0 1 1 1 3 /2 3 /2 3 −1

30 1 1 −1 1 −1 1 1 −1 0 1 1 /2 1 /2 1 −1

31 1 0 0 1 −1 0 0 1 0 1 1 /2 3 /2 1 −1

32 −1 0 0 1 −1 1 0 −1 0 1 1 /2 3 /2 2 −1

33 1 1 −1 1 −1 1 0 −1 1 0 3 /2 1 /2 2 −2

34 1 1 0 1 −1 1 −1 1 1 1 3 /2 1 /2 2 −2

35 −1 0 0 1 −1 1 −1 1 1 1 3 /2 3 /2 3 −2

36 1 1 −1 1 −1 1 −1 1 1 1 3 /2 3 /2 3 −3
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A
l,l�

�
=

4��l + l�� ! �− 1�l�

��2l + 1��2l� + 1��l − �� ! �l + �� ! �l� − �� ! �l� + ��!�1/2
. �24�

This allows the diabatic coupling matrix �7� to be diagonal-

ized analytically and matched to ab initio electronic structure

calculations. Our electronic structure results provide a

smooth match to the calculated long-range behavior �4�.
Eleven adiabatic potential curves produce the 36�36 cou-

pling matrix V�,��
�Vla,ma,lb,mb,S,


la�,ma�,lb�,mb�,S�,
�. The unitary transforma-

tion between the atomic � and � representations then yields

the desired matrix V�,��
�Vla,lb,ja,jb,j,�

la�,lb�,ja�,jb�,j�,�
. The long-range be-

havior of the 11 adiabatic potential curves is given below

along with the corresponding symmetries. Comparison of the

first nine potentials with previous calculations shows several

improvements and corrections as described in �4�. The

O�R−7� coefficients reported in �4� may also be included in

the matching procedure if desired:

3
u
+:V1 = − 96R−3 + 324�8 − 36�R−5 − 6737R−6 + O�R−7� ,

�25�

3
u
+:V2 = − 6718R−6 + O�R−7� , �26�

3
u
+:V3 = 18R−3 − 3888R−5 − 8783R−6 + O�R−7� , �27�

3
u
+:V4 = + 96R−3 + 324�8 + 36�R−5 − 6737R−6 + O�R−7� ,

�28�

3�u:V5 = 432R−5 − 3062R−6 + O�R−7� , �29�

1�u:V6 = − 7501R−6 + O�R−7� , �30�

3�u:V7 = 216R−5 − 4042R−6 + O�R−7� , �31�

3�u:V8 = − 9R−3 − 1296R−5 − 6165R−6 + O�R−7� , �32�

1�u:V9 = + 9R−3 − 6165R−6 + O�R−7� , �33�

1
u
−:V10 = − 1824R−6 + O�R−7� , �34�

1
u
+:V11 = − 18R−3 − 8783R−6 + O�R−7� . �35�

The imaginary width components for the 3
u
+ states are taken

from Ref. �8�, and those of the other symmetries are un-

known and assumed to be zero. This introduces a source of

possible error into the calculation of ionization cross sec-

tions. However, the neglected imaginary components couple

only indirectly to the initial �2s ,2s� state of interest, so we

expect this error to be negligible.

V. NONADIABATIC RADIAL COUPLING

In previous work �1,2�, it was assumed that the unitary

transformation matrix between atomic and molecular basis

states was not dependent on distance—i.e.,

Unm�R� � 
�n�r�1,r�2;R����m�r�1,r�2;R��� . �36�

This approximation neglects nonadiabatic radial coupling be-

tween the �2s ,2p� and �2p ,2p� states. Using the full R de-

pendence in Eq. �17� allows the nonadiabatic radial coupling

to be included within the diabatic formulation for an atomic

basis set �n that is complete. The completeness of the atomic

basis set may be measured as a function of distance by ob-

serving whether the numerical unitarity of the Unm�R� is

maintained. Previous studies �4� showed that this measure of

completeness for an atomic basis set consisting of n1=n2

=2 states is better than 99% for distances greater than 20 a.u.

This represents a significant improvement over the use of

approximation �36� where the neglected long-range coupling

to the �2s ,2p� state produced by the dipole-quadrupole inter-

action prevents an accurate treatment of the scattering at in-

termediate distances ��20–200 a.u.�. In order to implement

this improvement, it is necessary to match the eigenvector

matrix elements obtained from the electronic structure calcu-

lations with those obtained from perturbation theory. This

requires a total of 25 projection coefficients �4� in addition to

the 11 potential curves �25�–�35�.
The diabatic basis set is implicitly R dependent, since it

consists of atomic orbitals centered at the moving nuclei.

This gives rise to weak radial derivative coupling which is

small compared to the potential coupling. Figure 1 shows the

potential coupling terms for 3�u symmetry with indices de-

fined in Table I. Note that the matrix element V5,9 between

the �2p ,2p� and �2s ,2p� states was previously neglected

�1,2�. This is the main effect of including the R dependence

in the projection coefficients. Similar results were found for

the other symmetries. The computer code that performs the

scattering calculation was written to allow an input value of

R where the R dependence of the projection coefficients is

first turned on. This introduces an adjustable parameter that

may be used to study the sensitivity of the scattering problem

to short distances where the atomic basis set is inadequate.

The method described here for handling the radial coupling

may also be implemented with the gauge transformation so

that both nonadiabatic radial and angular couplings are in-

cluded together. The details are given in the next section.
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VI. NONADIABATIC ANGULAR COUPLING

A derivation of the molecular to atomic gauge transforma-

tion is given in the paper by Zygelman et al. �6�. The basic

idea is as follows. In the molecular gauge, the assumption

that R� is aligned along the space-fixed z axis requires the

application of a rotation operator to generate electron rota-

tions about the nuclear center of mass. In passing to the

atomic gauge, a two-centered rotation operator must be ap-

plied to the asymptotic basis states so that they are quantized

along the space-fixed z axis for arbitrary orientation of the

nuclei. The result is a coupling matrix of the form �18�.
When the angular part of the translational functions is inte-

grated with Eq. �18� the resulting radial potential matrix be-

comes

V
�̃,��

˜

�JM�
�R� � 
la,lb, ja, jb, j,l,J,M�Hel�la�,lb�, ja�, jb�, j�,l�,J,M�

= �l,l��1/2�
�

� j l J

� 0 − �
	� j� l� J

� 0 − �
	V�,��

�R� ,

�37�

where J� = j�+ l� and M =�+m. Note that �̃ represents the set of

quantum numbers �la , lb , ja , jb , j , l� when referring to quanti-

ties in the total angular momentum representation whereas �

TABLE II. Nonzero matrix elements of the �↔� transformation.

i j 
� j ��i� i j 
� j ��i� j j 
� j ��i�

1 1 1 13 13 1 25 25 1/3

2 2 1/3 14 14 1 25 28 −2 /9

2 5 −2 /9 15 15 −1 /3 25 29 2 /9

2 6 −2 /9 15 17 −2 /9 25 30 2/3

2 7 2/3 15 18 2 /9 26 25 −1 /3

3 2 −1 /3 15 19 2 /9 26 27 1 /2

3 4 1 /2 15 22 2 /9 26 28 −1 /18

3 5 −1 /18 16 15 −2 /45 26 29 −2 /9

3 6 2 /9 16 17 16 /45 26 30 1/3

3 7 1/3 16 18 −1 /45 27 25 −8 /45

4 2 −8 /45 16 19 −1 /45 27 27 1 /5

4 4 1 /5 16 22 5 /9 27 28 1 /45

4 5 1 /45 17 15 2 /5 27 29 5 /9

4 6 −5 /9 17 17 1 /5 27 30 −2 /45

4 7 −2 /45 17 18 1 /5 28 25 1 /3

5 2 −1 /3 17 19 1 /5 28 27 1 /6

5 4 −1 /6 18 16 1 /3 28 28 −1 /6

5 5 1 /6 18 20 −1 /3 28 30 −1 /3

5 7 1 /3 18 21 −1 /3 29 25 4 /15

6 2 4 /15 19 20 −1 /3 29 27 2 /15

6 4 2 /15 19 21 1 /3 29 28 8 /15

6 5 8 /15 19 23 1 /3 29 30 1 /15

6 7 1 /15 20 15 −2 /3 30 26 1 /3

7 3 −1 /3 20 17 2 /9 30 31 1 /3

7 8 1 /3 20 18 1 /18 30 32 −1 /3

7 9 1 /3 20 19 1 /18 31 26 −1 /6

8 3 1 /6 20 22 −2 /9 31 31 2 /3

8 8 2 /3 21 20 1 /6 31 32 1 /6

8 9 −1 /6 21 21 −1 /6 32 26 1 /2

9 3 1 /2 21 23 2 /3 32 32 1 /2

9 9 1 /2 22 16 2 /3 33 35 1

10 12 1 22 20 1 /6 34 33 −2 /3

11 10 2 /3 22 21 1 /6 34 34 1 /3

11 11 −1 /3 23 18 −1 /2 35 33 1 /3

12 10 1 /3 23 19 1 /2 35 34 2 /3

12 11 2 /3 24 24 1 36 36 1
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represents �la , lb , ja , jb , j ,�� as described in Sec. III.

An alternative approach �9� is to initially perform the

gauge transformation using the � representation to obtain the

coupling matrix

V
�̃,��

˜

�Qq�
�R� � 
la,lb,S,
,L,l,Q,q�Hel�la�,lb�,S�,
�,L�,l�,Q,q�

= �l,l�,L,L��1/2�S,S�
�
,
��

�
�

mamb

�
ma�mb�

�L l Q

� 0 − �
	

��L� l� Q

� 0 − �
	� la lb L

ma mb − �
	

�� la� lb� L�

ma� mb� − �
	V�,��

�R� , �38�

where Q� =L� + l� with projection q=�+m. The desired � rep-

resentation may then be obtained using the transformation

V
�̃,��

˜

�JM�
�R� = �

Qq

�
L�

�
L���

�
S


�
S�
�

�
m�

�
m���

�J,Q��L l Q

� m − q
	

��L� l� Q

�� m� − q
	
ja, jb, j,��S,
,L,��

�
S�,
�,L�,���ja�, jb�, j�,���� j l J

� m − M
	

�� j� l� J

�� m� − M
	V

�̃,��
˜

�Qq�
�R� . �39�

Equations �37� and �39� were programmed separately and

were found to give identical results. This potential contains

coupling between the orbital angular momentum of the nu-

clei and the internal angular momentum of the atoms that is

missing in the CS approximation. The nonadiabatic radial

coupling described above may be included in �37� and �39�
by allowing the R dependence of Unm�R� to be computed

prior to transforming to the � representation.

The fine structure and Lamb shift contributions are in-

cluded in the � representation by adding the atomic energy

defects �� along the diagonal. The Schrödinger equation for

the nuclear motion then reduces to the set of coupled radial

equations

−
1

2�
� d2

dR2
−

l�l + 1�
R2 �u

�̃

JM
�R� + �

��
˜

V
�̃,��

˜

�JM�
�R�u

��
˜

JM
�R�

= �E − ��̃�u
�̃

JM
�R� . �40�

The 36 atomic basis functions �see Table I� consist of 10

different combinations of �la , lb , ja , jb , j�. The number of

coupled channels needed for each J may be computed from

these 10 combinations and the 3j symbols in Eq. �37�. For

J=0, 1, and 2, there are 3, 16, and 15 coupled channels,

respectively. For J�2, there are 16 coupled channels when J

is even and 20 coupled channels when J is odd. The next

section describes results obtained by solving the coupled

equations �40� and compares them with previous results �2�
obtained using the CS approximation.

VII. COLLISION CROSS SECTIONS

The collision cross sections computed within the CS ap-

proximation are obtained as in previous work �2� and are

given by

�→��
=

2�

k�
2 �

l

�2l + 1��T�→��

�l� �2, �41�

�→ionization =
2�

k�
2 �

l

�2l + 1��1 − �
��

�S�→��

�l� �2� . �42�

Due to proton symmetrization, the summations in �41� and

�42� are taken over even values of l only. These cross sec-

tions are defined the same whether or not nonadiabatic radial

coupling is included in the calculation. When the nonadia-

batic angular coupling is included in the scattering formula-

tion, however, we cannot simply sum over a conserved l to

obtain compact definitions for the cross sections. Instead, the

cross sections may be derived using methods similar to those

of Zygelman et al. �6�. The result is

�→��
=

2�

k�
2 �

JM

�
J�M�

�
lm

�
l�m�

� j l J

� m − M
	� j� l� J�

�� m� − M�
	

�� j l J�

� m − M�
	� j� l� J

�� m� − M
	�J,J��

��T�J��la,lb,ja,jb,j,l

la�,lb�,ja�,jb�,j�,l��T��J���la,lb,ja,jb,j,l

la�,lb�,ja�,jb�,j�,l�, �43�

10 100 1000
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FIG. 1. Potential energy matrix elements as a function of dis-

tance for states with 3�u symmetry with indices defined in Table I.

The off-diagonal matrix element, which couples the �2s ,2p� and

�2p ,2p� states, is nonzero when the R dependence of Uij is taken

into account.
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�→ionization =
2�

k�
2 �

JM

�
ll�j�

� j l J

� M − � − M
	2

�2J + 1�

��1 − ��S�J��la,lb,ja,jb,j,l

la�,lb�,ja�,jb�,j�,l��2� . �44�

Proton symmetrization again restricts the summations in �43�
and �44� over even values of l and l� only. This differs from

the formulation of Zygelman et al. �6� and is a consequence

of using symmetry-adapted basis functions. Figure 2 shows

cross sections computed within the CS approximation at a

collision energy of 10−10 a.u. The horizontal axis is the dis-

tance R0 where the R dependence of the transformation ma-

trix Uij�R� is first turned on. For R�R0, the calculations

assumed Uij�R�=Uij�R0�. In the R0→� limit, the nonadia-

batic radial coupling is completely neglected and the cross

sections may be compared to results obtained previously �2�.
However, due to modifications in the long-range behavior of

the adiabatic potentials �25�–�35�, we find significant differ-

ences in this limit. The elastic, inelastic, and ionization cross

sections are about 100 times larger, 2.5 times smaller, and

1.2 times larger than their respective values obtained using

the previous long-range behavior which neglected coupling

between �2s ,2p� and �2p ,2p� states. Large sensitivity of the

elastic cross section to small changes in the potential is com-

mon in ultracold collisions. The new calculations also allow

inelastic single excitation transfer to occur for finite values of

R0. Figure 2 shows that this contribution is relatively small

and contains oscillations that are presumably a measure of

the sensitivity of the cross section to the short distance be-

havior. The low amplitude of these oscillations and the in-

sensitivity of the remaining cross sections to R0 suggest that

nonadiabatic radial coupling does not play a significant role

when the calculations are performed in the molecular gauge

using the CS approximation.

The situation appears quite different when the cross sec-

tions are computed in the atomic gauge where uncalculated

nonadiabatic angular terms have the proper long-range fall-

off. Figure 3 shows cross sections versus R0 at the same

collision energy as in Fig. 2. The curves are labeled by the

final-state projection quantum number ��, which now may

be different from the initial state �=1. This yields three

contributions that must be added together for each of the

elastic and inelastic cross sections. More important is the

observation that the �2s ,2p� contributions are considerably

larger than in Fig. 2 with oscillations that are of larger am-

plitudes. The inelastic �2p ,2p� cross sections also show a

significant R0 dependence below 100 a.u. The sensitivity of

the cross sections to R0 suggests that the interaction at short

distances is important at ultracold collision energies. When

our calculations are extended to smaller values of R0 the

numerical unitarity begins to deteriorate and the correspond-

ing cross sections become erratic. In this region, nonadia-

batic angular coupling terms may be significant.

In the R0→� limit, the inelastic and ionization cross sec-

tions are shifted from their respective CS values, but their

sum is essentially unchanged. Therefore, it appears that the

nonadiabatic angular coupling does not have a large effect on

the total quenching cross section when the nonadiabatic ra-

dial coupling is neglected. It is only when the two sources of
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FIG. 2. �Color online� Cross sections computed with CS ap-

proximation at a collision energy of 10−10 a.u. The elastic, inelastic

double excitation transfer, and ionization cross sections are not sen-

sitive to the value of R0 where the R dependence of the transforma-

tion matrix Uij�R� is first turned on. In the R0→� limit, the nona-

diabatic radial coupling between the �2s ,2p� and �2p ,2p� states is

completely neglected and the inelastic single excitation transfer

cross section goes to zero. The inelastic and ionization cross sec-

tions in this limit are 2.5 times smaller and 1.2 times larger than

their respective values obtained previously �2�. This difference is

due to improvements in the adiabatic potentials �25�–�35� as de-

scribed in �4�.
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FIG. 3. �Color online� Cross sections computed in the atomic

gauge at a collision energy of 10−10 a.u. The final-state projection

quantum number �� is not restricted to be the same as the initial

value � as in the CS approximation. The single excitation transfer

cross sections are relatively larger than in Fig. 2 with oscillations

that are also larger in amplitude. The double excitation transfer

cross section for ��=1 shows the strongest variation with R0 at

intermediate distances and has a minimum just below 50 a.u.
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nonadiabatic coupling are taken together that a substantial

change in the total cross section may appear. We may esti-

mate the effect of the short-distance behavior by computing

cross sections over a range of R0. Figure 4 shows the total

quenching cross section versus collision energy for R0

=40–500 a.u. in steps of 10 a.u. for the low values �solid

curves� and 100 a.u. for the high values �dashed curves�. The

total cross section includes both single and double excitation

transfer contributions, including summation over ��, and

also the ionization contribution. The double excitation trans-

fer and ionization cross sections have been multiplied by 2 to

account for the loss of two metastable particles per collision.

The figure shows that there are only small differences in the

curves when the energy is greater than 10−7 a.u. due to the

long-range centrifugal barrier that prevents the atoms from

getting into the region where the short-range coupling oc-

curs. As the energy is decreased, the centrifugal barriers are

reduced and the curves begin to separate from each other.

The structure of each curve, however, remains very similar

with a peak near 2�10−8 a.u. that is due to a shape reso-

nance. The shape resonance is a consequence of a very shal-

low well in the adiabatic potential curve for the �2s ,2s� en-

trance channel produced by the long-range attraction. Similar

resonances were found previously �2�; however, due to the

use of the CS approximation, all centrifugal barriers that may

occur for a given J were replaced by a single barrier with

angular momentum l. This typically causes an artificial en-

hancement or suppression of the shape resonance for a given

partial wave. The approximation is removed by the molecu-

lar to atomic gauge transformation, and we see a significant

difference in the cross sections in this energy region. The

elastic scattering cross section �not shown� also shows sig-

nificant differences from previous results �2� due to the im-

proved handling of nonadiabatic angular coupling. At ener-

gies below the region of the shape resonance, the sensitivity

of the cross sections to R0 increases further. The dashed

curves are larger than the solid curves in this energy region.

The two lowest solid curves correspond to R0=40 and 50

a.u., which is a consequence of the location of the minimum

of the ��=1 curve for the inelastic �2p ,2p� case shown in

Fig. 3.

The cross sections shown in Fig. 4 may be used to com-

pute trap loss rate coefficients by thermally averaging the

product of cross section and collision velocity. The result is

shown in Fig. 5 together with the experimental data points

�3�. It is surprising that none of the theoretical curves are

able to reconcile the disagreement with experiment. The de-

crease in the rate coefficients for R0�100 a.u. suggests that

neglected short-range nonadiabatic coupling may be contrib-

uting to the disagreement with experiment. The R0=40 and

50 curves just barely intersect the upper part of the error bar

for T=100 �K, and all of the curves lie above the error bar

for T=200 �K. The shape resonance that was found in the

cross section at an energy near 2�10−8 a.u. contributes to

an increasing rate coefficient for T�1 mK. The long-range

origin of this resonance makes it unlikely that it would dis-

appear with an improved treatment of the short-range nona-

diabatic coupling. The cross sections increase inversely with

decreasing collision velocity for energies below 10−9 a.u. in

accordance with Wigner’s threshold law. This produces a

trap loss rate coefficient that is nearly independent of tem-

perature for T�300 �K. Although the error bars of the two

experimental data points allow for a rate coefficient that is

independent of temperature in this region, the data suggest

that there may be a decrease in the rate coefficient for T

�100 �K. Figure 6 shows the energy dependence of the

function that multiplies the cross section to obtain the ther-
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mal rate coefficient for temperatures near those of the experi-

ment. The T=100 �K curve samples very little of the en-

ergy region above 10−9 a.u. where deviation from Wigner

threshold behavior begins to occur. The T=200 �K and T

=300 �K curves sample more of the above-threshold re-

gion; however, both curves are negligible in the region of the

shape resonance. Therefore, if the decrease in the rate coef-

ficient for T�100 �K is real, then the total quenching cross

section would need to be considerably smaller than any of

those shown in Fig. 4 for energies in the 10−9−10−8 a.u.

range. It is possible that hyperfine and magnetic field cou-

plings could have an influence in this region and be contrib-

uting to the disagreement with experiment. It should be

noted, however, that this discrepancy is limited to only two

data points and suggests the need for additional experimental

data.

VIII. CONCLUSION

We have implemented two significant improvements over

our previous calculations �1,2� of collisional cross sections

for spin-polarized H�2s� atoms. Specifically, we have re-

placed the coupled states approximation with a coupled-

channels formulation that properly handles nonadiabatic an-

gular coupling at large distances. We have also included

nonadiabatic radial coupling that arises from electrostatic

dipole-quadrupole interactions between �2s ,2p� and �2p ,2p�
states at long range. Calculated cross sections were found to

be sensitive to both of these improvements.

The nonadiabatic coupling may be described in terms of a

vector potential whose angular components do not vanish in

the separated atom limit �6�. The molecular to atomic gauge

transformation allows the angular components of the vector

potential to fall off properly with distance, yielding nonadia-

batic couplings that are well behaved in the asymptotic re-

gion. Inelastic effects induced by the vector potential at short

distances are assumed to be small and are neglected. Nona-

diabatic radial coupling is included through the R depen-

dence of the unitary transformation matrix �17�. A set of

calculations corresponding to 11 different values of R0 was

performed in order to study the influence of the nonadiaba-

ticity on the cross sections as a function of distance. The

results were found to be qualitatively similar with vanishing

sensitivity at high energies. A trend toward smaller cross

sections was found for R0�100 a.u., which suggests the

nonadiabatic coupling may be at least partly responsible for

the disagreement with experiment. However, the calculated

rate coefficients continue to be several times larger than the

experimental error bars with little temperature variation in

the region where the experiment suggests that there may be a

significant decrease. Preliminary calculations that include

hyperfine coupling but neglect nonadiabatic radial and angu-

lar coupling have produced only small changes to the cross

sections. However, the cross sections may turn out to be

significantly modified when nonadiabatic coupling is in-

cluded together with the hyperfine interaction. This calcula-

tion requires an enlarged basis set that includes proton

spin and is a natural extension of the formulation described

here.
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