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Abstract
A discrepancy concerning the statistical averaging procedure is resolved for the
refractive index of matter waves travelling in a dilute gas.

In determining the index of refraction for matter wave propagation in a dilute gas, itis necessary
to perform a statistical average with respect to all microscopic parameters of the medium.
Taking account of the thermal motion of the medium has led to a discrepancy regarding the
velocity distribution function of the gas particles [1-3]. The discrepancy is attributed to a
dragging or Fizeau effect [2] caused by the motion of the particles in the medium. At low
values of the relative velocity, the difference between the distribution functions given in [1-3]
with the correct one given in [4] becomes significant. Here, we clarify the issues that lead to
the distribution function given in [4].

The application of multiple scattering theory to the present problem has been described
previously [4]. It was claimed [2, 3] that the distribution function used in [4] to compute the
refractive index is incorrect due to neglect of the vectorial nature of the wavevector. We show
that these claims are unfounded. The dispersion equation for a matter or electromagnetic wave
propagating in a medium of independent scatterers is given by [5, 6]

kP = ki + 47 N(fy ks, 0)) o))
where N is the number density of the medium, k; and IQ’L are the respective wavevectors in

the vacuum and medium, and ( f7,(ky,, 0)) is the average forward-scattering amplitude in the
laboratory frame. The square of the refractive index is defined by
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From the dispersion equations (1) and (2), we see that the index of refraction does not depend
on the direction of the wavevector. This makes perfect sense when we consider that a spherical
wave having no preferred direction has the same value of refractive index as a plane wave. For
a dilute gas, the index of refraction is given by [4]
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The forward-scattering amplitude f (k, 0) is calculated in the centre-of-mass (CM) frame for
two particles with relative momentum k. A key step in the derivation of equation (3) is the use
of the Lorentz invariant ratio [7, 8]

frk,0)  f(k,0)
ke kO
The invariance of the imaginary part of equation (4) is clear from the optical theorem. The
invariance of the real part is easily demonstrated using the Born approximation
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where the relative velocity v and the volume integral of the potential V are invariant with
respect to Galilean transformations.
The average in equation (3) is taken with respect to the distribution function
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Here u is the reduced mass myrmp/(mp + mp) with mp and my the respective masses of
the projectile and target atoms, and S is the inverse of the Boltzmann constant times the
temperature of the target gas. This distribution function takes into account different values
and directions of the relative velocities. This may be seen by examining the derivation of the
formula, which begins by integrating the energy conserving delta function over a Maxwellian
velocity distribution
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where vp is the velocity of the projectile atom and vy is the velocity of the target gas atom.,
The integration is easily performed in spherical coordinates using the change of variable
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Integration of equation (11) produces the distribution function given by equation (6). Itis clear
from this derivation that the vectorial nature of the projectile and target velocities has been
properly taken into account. The required average in equation (3) is given by
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normalizes the distribution function. The origin of the discrepancy [2,3] may be traced to the
incorrect transformation equation

kp(ng —1) =k(new — 1) (14)
where ncy was defined to be the index of refraction in the CM frame [2]. For non-parallel
ki and k, it was argued that a dragging or Fizeau effect must be taken into account [2]. We
do not believe that this is the correct interpretation. In particular, we disagree with the use of
equation (14) and believe that it is equation (4) that should be used when transforming between
reference frames. Because equation (3) is the leading order term of a Taylor series expansion
for the square root of n?, it is incorrect to view equation (14) as a generalized vector version
of equation (3). It is not even clear whether it is meaningful to define an index of refraction in
the CM frame because each pair of colliding particles has its own CM. However, it is clear that
equation (4) is invariant under transformation and forms a natural foundation for the averaging
procedure. Furthermore, the distribution function given by equation (6), when multiplied by
the wavenumber for relative motion, reduces to a Maxwellian distribution in the limit of zero
beam velocity

. 2 I’}’lTk2
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The distribution function given by Vigue and co-workers [2] and also the one given by Leo
et al [3] do not reproduce this physically correct limiting behaviour. If the target gas atoms
in the medium are cooled to the limit of zero temperature, then the distribution function (6)
becomes a delta function
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Equation (17) was derived for two-body amplitudes in the classical 7 — 0 limit of the medium.
The medium is assumed to be sufficiently dilute that a statistical coarse-graining procedure
remains adequate when the de Broglie wavelength of the target atom is large. The result also
applies in the 7 — 0 limit for a mean field description of the medium [9].

Atom interferometry experiments [10] perform simultaneous measurements of the phase
shift and the attenuation of the interfering amplitude. Therefore, they are most sensitive to the
ratio

Re[n(ky) —11 [y Relf(k, 0)]p(kz, k) dk
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It is convenient to define
Ro = lim R(k;) = w. (19)
750 Im[ f (£ kg, 0)]

The k — O limiting behaviour of Ry(k) may be used to determine the parameters in the
effective range expansion [11]

Ro(k) ~ —(a,b)™" + r.k (20)

where ay is the scattering length and r, is the effective range of the potential. The optical
theorem may be used together with (20) to show that the scattering length is given by

as = — /{irr(l) Re[ f(k, 0)]. 21
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If we divide the scattering length by the relative velocity v, we obtain a characteristic time of

collision
Y  [Re f(k,0 . [Re fulk.,0
=% o pim| RSO g, [ReSK O 22)
v k—0 k kp—0 kr,

This time is invariant with respect to reference frame and is related to the lifetime Q of the
scattering state [7]

dé 2a,
Q=2—=-2t=-—"2, (23)
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The formulation given in [2] does not reproduce this result. Generally, the differences between
the distribution functions given in [1-3] and the correct one given in [4] are magnified for low
temperatures and beam velocities. Therefore, in these limiting cases, the error introduced
through an incorrect choice of distribution function would be severe.
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