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The hypergeometric function of a real variable is computed for arbitrary
real parameters. The transformation theory of the hypergeometric function
is used to obtain rapidly convergent power series. The divergences that occur
in the individual terms of the transformation for integer parameters are
removed using a finite difference technique. © 1997 Academic Press

I. INTRODUCTION

The hypergeometric function ,F; occurs in many areas of physics. For example,
the matrix elements for radiation processes in hydrogen atoms [1] and form factors
for atomic collisions [2] can be expressed in terms of hypergeometric functions.
The Wigner simplified rotation matrices [3] can be written in terms of Jacobi
polynomials which are particular cases of the hypergeometric function. The radial
momentum space wave functions for a Coulomb potential are given by Gegenbauer
functions [4] which are related to hypergeometric functions. The application that
has motivated the present work is the need to evaluate Bethe logarithms [5] for
theoretical calculations of the QED Lamb shift. It was shown [5] for hydrogen and
helium that the required Bethe logarithms could be evaluated from matrix elements
that are expressible in terms of hypergeometric functions of a real variable. There-
fore, it was desirable to have an efficient computer program that could evaluate
the hypergeometric function for an arbitrary real variable. Such a program is now
available [6] and is described in the present paper.

II. THEORY

The hypergeometric function ,F; is defined by the series

2F]((1, b,C,Z) = i%, (1)

n=0
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TABLE I
Transformation of the Hypergeometric Function

Case Interval Transformation
1
1 - <z < -1 w=
1-z
z
11 -1=z<0 w=
z—1
111 0=z=35 w=z
v S<z=1 w=1-z
\' 1<z=2 w=1—%
1
VI 2<z<+w w=—

which converges for |z| < 1 as can be seen by the ratio test. For z outside the circle
of convergence, it is necessary to transform z in such a way that the hypergeometric
function can be expressed in terms of other hypergeometric functions of a new
argument w such that |w| < 1. To do this, the real axis was divided into six intervals
as shown in Table I. In each case, the new independent variable w lies in the
range zero to one-half, so that the series in powers of w not only converges, but
converges rapidly.

A. Transformation Equations

With the real axis divided into the six intervals shown in Table I, the transforma-
tion theory [7] for the hypergeometric function can be used as follows. For case I,
the identity

LL(b — a)

2Fi(a,b;c;2) =w 2Fi(a,c —bya— b+ 1;w)

L®)(c—a)
p L@~ b) —wb—atl:
m 2F1(b, Cc—a b a—+ 1, W) (2)

is used to calculate ,F;. If a — b is equal to an integer, one of the terms in (2) will
diverge due to a gamma function of negative argument in the numerator and the
other term will diverge because the third parameter of the ,F, is a negative integer.
The sum of the two terms, however, remains finite as a — b approaches an integer.
This problem is discussed in detail in the next section. For case II, the identity

2Fi(a,b;c;2) = (1 — w)LFi(a,c — by c;w) 3)

is used. No transformation is needed for case III. For case IV, the identity
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r'lr(c—a—»b)
I'(c—a)l'(c —b)

4 yle-a-b) relr@+s -
L(a)I'(b)

2Fi(a,byc;z) =

2Fi(a,ba+b—c+ 1;w)

C)2F1(c—a,c—b;c—a—b+1;w) 4)

is used. If ¢ — a — b is equal to an integer, both of the terms in (4) diverge for the
same reason as in case I. For case V, the branch which is obtained by letting z
approach the real axis from above is chosen yielding the identity

lirn+ oFi(a, b;c; z + ig)
_ 1 _ L@ (c—a—b)
=) e T e =b)

JFila,a—c+La+b—c+1;w)

T'(e)'(a+b—c)

+ (1 - b (c—a-b) ,—ir(c-a-b)

2Fic—a,l—a,c—a—b+1;w).
(5)

Using the identity ,Fi(a, B; y; w) = (1 — w) 2, Fi(y — @,y — B; v; w) where
a=c—a,B=1—a,andy =c—a— b + 1, Eq. (5) can be expressed as

lim »F(a, b; c; z + ig)
e—0"

JLE(c—a—b)
I'(c —a)'(c—b)

=(1-w) 2Fila,a—c+1a+b—c+1;w)
' e)'(a+b-c)

+ (1 — aly,,|(c—a-b) ,~in(c—a—b)

2Fi(1—b,c—b;c—a—b+1;w).
(6)

If c — a — b is equal to an integer, the two terms on the right-hand side again
diverge if taken separately. Finally for case VI, with z approaching the real axis
from above, the identity

. . N GINCED))
etz + — a,ina —c4+1:a- +1:
slion} JFi(a,b;c; z + ig) = [w|% T(b)T(c—a) JFi(a,a—c+1;a—b+1;w)
+ |wlbei™ —EEZ;I;,EZ : Z; (b —c+1,b;b—a+1;w) (7)

is used. If @ — b is equal to an integer, there is again a problem with divergent terms.

B. Exceptional Cases

In the previous section it was noted that a problem arises when either a — b is
an integer (cases I and VI) or ¢ — @ — b is an integer (cases IV and V). In all of
these cases, each of the two terms is infinite, but their sum remains finite. Near
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these cases, i.e. for a — b close to an integer or ¢ — a — b close to an integer, the
two terms are large and of opposite sign and must be combined analytically to
avoid excessive roundoff error. To carry out this combining for case I, we let a —
b = k + &, where k is an integer greater than or equal to zero and |e| is small. If
k is negative, it can be made positive by interchanging a and b (note that ,Fi(b, a;
¢; z) = 2Fi(a, b; c; z)). Equation (2) can be written in the form

F(C) kil (b),,(C - a),,r(k —-—n+ 8)(_1)”wb+n

2F1(a,b:¢:2) = Fosrc = p) 2 n!

ST@+n)l(c—a+k+n+e)l(—k—n—eg)(—1)wr"
R OP T(@T(b)I(c — a)(c — byn!

“T(a+n—e)l(c—a+k+n)l(—n+g)(—1)ythwen—s
T 2, T(@T () (c — a)T(c — b)(n + k)]

®)

Equation (8) can be expressed [8] in terms of finite differences (see Section IIC)
which allow all of the terms to remain finite. The remaining cases are similar. For
case IV,if c —a — b = k + &, where k = 0 and |e| is small, (4) can be brought to
the form

N I'(c) k1 (a),(b),I'(k +&—n)(—1)y'w"
2£i(a, b; ¢ 2) _F(c—a)F(c—b)”ZO n!
ST(c—a+n)l(c—b+nl(—n—k—g)(—=1)wrtkte
T2 T(@T(b)T(c — a)T(c — bn!
ST(a+n+ kb +n+ k(e — n)(—w)*
MO e e BN N T T ©)

Ifc —a— b= —k+ ewith k > 0, a slightly different approach must be used to
fix up case IV. In this case (4) can be rewritten as

Fa,bici) = oS (T DT DT e 2 ()

F(a)F(b) n=0 l’l!
ST(a+n+e)(b+n+e)l(—n—g)(—1)" " wrte
T T(@T ()T (c — a)l(c — bY(n + k)!

ST(a+n)l(b+n)l(e—n—k)(—w)"
1) 2% = T PO (e — T (e — byl

(10)

The notation IVa and IVb is used to refer to (9) and (10). For case V, if ¢ — a —
b = k + &, where k = 0 and |g| is small, then (6) can be written as
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lim ,Fi(a, b; ¢; z + i)
80"

— _ a a (a)n(l +a— C)nr(k —n+ 8)(_w)”
= (1 w) F(C) {nE() I‘(c — a)F(C — b)n!

2 (@1 +a— )yl (e — n)(—w)l'l+k
’ 20 I'(c—a)l(c = b)(n+ k)!

+ {cos[n(k + &)] — isin[n(k + &)]}

5 (1= b)c — b)I(—k — n — e)(—1)'wrekes
2 F@r o) }

(11)

The real part of the infinite series can be expressed as

. = (@)nil (8 = n)(w)"**
(1= w)T(c) Sg {F(b —n+e)l(c—b)n+ k)

(c—b)L(-k—n- s)(—l)kw’”"”}
T'(@)['(b — n)n! '

+ cos(me)

As in case IV when ¢ — a — b = —k + g, a slightly different approach must be
used to fix up case V. In this case Eq. (6) can be written as

lim ,F(a, b; c; z + i6)
50"

=1 - w)T(cHcos|m(e — k)] — isin[n(e — k)]}
{k‘l (1 =b)(c = b)I'(k —n—g)(—1)ywr ke
ZB T'(@)I'(b)n!

) (1 _ b)n+k(C _ b),,+kr(—8 _ n)(_l)/l+kwll+s
ta F@U(b)(n + K)! }

+ (1= w)T(c) }1 (a)nétza—_c ;:11;((8b—_kk—+n3)(’1—!W)”‘ 12)

The notation Va and Vb is used to refer to (11) and (12). For case Vb, the real
part of the hypergeometric function can be expressed as

Re,Fi(a, b;c;7)

k-1 _ _ —n—2e)—-1)" n—k+e
= (1 = W) cosln(z ~ 0] 3, Bkl b)§r($r(b’;ns S

u S IF'(a+n)l'(—k—n+e)w”
A=W 2, {F(a)r(a "kt e (b—k—n+tem!

Sm VG s N o] 13)

F@l(a—k+&)l'(b—k—n)(n+k)!
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In case VI, when a — b = k + & with kK = 0 and |e| small equation (7) can be
written as

lim ,Fy(a, b; c; z + i)
5-0"

=TI'(c)[cos(mb) + isin(mb)] kj (b=t Dub) Lk + & = m)(=1)'w™?

n=0 F((,l)r(c — b)}‘l‘
+T() 20 {[COS(W) +isin(a)] @la—c+ })(’115(1“_(5—_5); n)(—1)'w"e

(b)n+k(b —c+ 1)n+kr(8 — n)(_l)r1+kwrz+k+b
T(@)I(c - b)(n + k)! } (14)

+ [cos(mb) + isin(wb)]

C. Finite Difference Results

The exceptional cases of Section IIB can be expressed in terms of finite differences
[8]. The results are presented in this section using the definition

fi(e;n) — fi(0; n)

€

8gi(esn) = (15)
where the specific f-functions are defined in Appendix A. For case I, the finite
difference result is

T'(c) k1 (b)u(c —a),L'(k —n+ &)(—1)"wbtn

2Fi(a,bsc;z) = T'(a)[(c — b) ,,20 !

+ (“1FT(e) 3 (@) Ao n) Ao m) FA0: 1) F5(0: m)gh(e)

— fi(e;n)(c — @)r+nf50; n) file; 1) f5(e; 1) g'(e)

— gi(e; n) fi(e; n) f5(e3n) F4(0; n) F5(0; n)

+ fi(esn)gi(e; n) fi(e; n) f4(0; n) £5(0; n)

+ fi(esn) f5(0; n)g5(e; n) £4(0; n) £5(0; n)

— fi(esn) £5(0; n) £5(0; n)gi(e; n) F5(0; n)

= fi(esn) f2(0; n) £5(0; n) fa(e3 n)g5(e; n)}. (16)

For case 1Va, the finite difference result is

NGO k21 (@),(b),I'(k — n + &)(—1)"w"

2Fi(a,b;c;z) = I'(c—a)l'(c—b)5 n!

F DT 3 (@O 0 ) m) (O (e)

0 m)(B ) 0 ) Pt 0 g )
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~(@psn(b)isrne [5(0: 1) f37 (23 0) f57(0: 1) g6 (2) 87" (2)

+g1"(e: n) 27 (&1 1) 3 (25 1) f37(0: ) 57 (e )

+ f1Y(0: )88 (&3 ) f5 (25 1) 170 ) 57 (e )

+ f1(0; n) £37(0; 1) g5 (3 ) f57(0: ) (25 1)

= [0 ) £2(0; 1) £37(0; ) g8 (&1 1) 5 (21 )

+ [0 ) £27(0; 1) £379(0; ) £ (23 1) g8 (23 1)} (17)

For case 1Vb, the finite difference result is

I'(o) S:l (c — a)(c — b),I'(k — n— g)(—1)'wk+e

2Fi(a,bic;z) = T'(a)(b) =, !

+ (ZDAT(0) 3, (= (@) FA2(0: m) 5770 m) FAY2 (o2 m) P30 ) (o)

= F1P0;)(D)n f372(0; n) f3 (25 ) £57(0; )77 (8)

= (@)u(b)ue f57(0;n) 37 (23 1) 57(0: ) g6 ()85 (&)

+ g1 (e n) [2"2(&5 1) 37 (85 1) f372(0; ) 50 (25 1)

+ 1700 1) 85" (&5 n) 3785 1) f372(0: ) 525 1)

+ f172(0:n) £372(0: )57 (25 ) f370(0: ) 5725 1)

= f1(0: ) £372(0: ) £57(0: ) g2 (83 ) 57 (25 1)

+ f172(0: ) £372(0: ) £370(0: ) £ (85 ) 857 (25 ). (18)

For case Va, the finite difference result for the real part of the hypergeometric
function is

Re,Fi(a, b;c; 2)

a S (a)n(l +a— C)nr(k —nt 8)(_W)n
=1 -w)T(c) Zo I‘(C — a)r(c — b)n!

+ (1= w)T(c) io (=1 {—gY “(e:n)f1(e) f3°(0;n) f{(e3n) f5“(2: 1)

+ f1(e;3n)g¥(e) fY(0; n) fi(e5n) f5(e3m)
— f(e;sn) f7(0)g3 (e3 n) fi(e5n) f5°(£3 1)
+ f1(esn) [7(0) f3(e3 n)gi (85 n) f5°(83 1)
+ (e n) f1(0) f3(e3 n) f1(0; ) g3 (25 )

e ey e ) e ) (19)

and the imaginary part of the hypergeometric function becomes
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lim Im »Fi(a, b; c; z + i6)
80"

sin(re) & (¢ = b)u(=1)"f5(0; n) f{*(e3 1) f5“(e3 1)
=—(1—-w)T . (2
=Wy T(O=—=2 T(@r® - n) (20)
For case Vb, the finite difference result for the real part of the hypergeometric
function is

Re »Fi(a, b;c; z)

= (1 —w)T'(c) cos[n(e — k)] kE: Sl b)il“l;g(ll)cl“_(b’;n_! ol

+ (1 =w)T(c) i (=1 =(a).f2"(e:n) fY°(0; ) f1*(e3n) £5°(0: n) g7 (e)

n=0
+ g1%(e;n) f3°(0; n) F¥°(e3 n) f1°(0; n) f3° (&5 m) f & (e)
— f17(0;n)g5"(e; n) f¥(e; n) FYP(0; n) f¥* (&3 ) P (8)
+ 170, n) f3°(e; ) g¥" (25 n) fYP(0; n) f¥P (25 ) fEP(8)
= Y20 n) f¥2(e: n) fYP(0; n) X (&3 n) fYP(8:1) f&(2)
+ 120, n) f3°(e; n) f¥P(0; n) f1P(e3 n) g8 (e5 1) fEP(8)
+ 120, n) f3°(e3 n) fYP(0; n) 1P (23 ) fYP(0; m) g8 ()}, 21

with the imaginary part

lim Im ,F(a, b; c; z + i5)
50"

= —(1—w)T(c) {Sin[ﬂ(s — k)] lil (1 =b),(c=b),I'(k—n—g)(—1)ywkt

n=0 F(a)r(b)n'
sin(me) & (¢ = D)ien(l = D)isn fY°(e: 1) f1°(0; ) f¥P (3 1)
e & @I (b) } 22)

For case VI, the finite difference result for the real part of the hypergeometric
function is

Re ,Fi(a, b;c; 2)

= T'(c) cos(mb) 20 (B)u(b — ¢ +r1()an)1;((kcti)_lq!,l)(_l),,w,”

— I'(c) sin(wb) SiHSTS) go (@)@ —c+ 1)F,,( ,jv)lé(z;c nj f;V)’(s; 1) FY1(0; )

+T(E) os(mb)(~1)%* 3, (@), 47(ex m)FEH0 ) P ) Y05 )£ (o) ()
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— gl"(e:n) ¥ (&3 n) FY(0; n) (&5 ) FY(0; ) fE(8)
+ ' (esn)gd (e:n) fFY(0;n) f1 (3 m) f51(0; m) £& ()
= [{"(e;n) f51(0; n)g¥'(e; n) f¥ (&5 n) fY(0; ) fE'(e)
+ f{'(e;n) f¥1(0; ) f¥(e3 1) g¥" (e n) fY(0; ) fE(e)
= f{"(e;n) f51(0; n) f¥(e; ) fY1(0; n) g8 (&5 ) fE' (&)
+ 1 (e;n) 310, n) £5(5n) £17(0; n) 57 (83 m) g8 ()}, (23)

with the imaginary part

lim Im »F(a, b; ¢; z + i6)

kL (B)u(b —c +1),I'(k+ & — n)(—1)'w"?
i £) < G 1/1 1‘5/1 Oa 4‘1/[ €, g/l 0’
+ I'(c) cos(mb) Sm(: )’%(a) (azcx )r{b)ﬁ(cnzfa)( QLS

+ T (c) sin(wb)(—1)" i {(@).f2'(e:n) 110 n) [ (21 1) 57(0; ) () (&)

n=0
— g/ (e;n) 3 (e; ) fY'(0; n) f (&5 ) F5(0; m) £ ()
+ f{(esn) g3 (&5 n) 510, n) £ ¥ (85 1) f57(0; n) £ (&)
= f{"(e;n) f57(0; n)g¥'(e;n) ¥ (£ 1) £57(0; n) ¥ (&)
+ f{(e;n) 370 n) fY' (e, n) g4 (85 1) £57(0; n) ¥ (&)
= f"(e;n) 370, n) f¥' (e, n) fY(0; ) ¥ (&5 n) " (&)
+ f{(esn) 370 n) fY (&3 n) £37(0; 1) f¥ (e ) g8 (&)} (24)

III. FORTRAN PROGRAM

The FORTRAN program for the hypergeometric function [6] has been written
in the form of a subroutine called HYP. Some of the important programming details
of HYP are given in this section.

A. Programming Details

The Pochhammer symbol is computed by the recursion relation
(x)n = (x +n— 1)(x)n*1 > (25)
with the starting point (x); = 1. The terms of the hypergeometric series in the

region of convergence can thus be computed recursively by applying (25) to (1)
to obtain
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(@)u(b),z" (a+n—=1)(b+n—1)z(@),1(b),12""
O ctn—Dn (@11 (26)

with the initial condition (a)o(b)oz%/(c)o0! = 1. These terms are calculated and
summed in the subroutine HYPER. The number of terms needed to get good
convergence is determined from the following algorithm [8]. Let the hypergeometric
function be written in terms of the finite series expansion

& (@)u(b),z"
Fi(a,b;c;z) = 20 O (27)
plus the remainder
(@)ns1(D)ns1 ZNH}
Ry=|—"—""—"1|S~ 28
S R 9
where
& @+t N+1),(b+N+1),(N+1)z"
SN_,; (c+N+1),(N+n+1)! @9
It is not difficult to show that
“ (e + N+ 1),(N+ 1"
R R (30)
where
o = max(ay, o), (31)
with
_(@+N+HOb+N+1)
(c+N+1) -N-l (32)
and
op=a+b—c (33)
After a few more manipulations, we can see that
Ry= (@na(D)naz™ &K (N+k+ 1) (34)

)nilk + Dyl —2) S (N+ k+1—n)ln’
where

k = Int[max(cg, ay)]. (35)
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The series (27) is truncated when the remainder Ry is less than machine epsilon.
A subroutine that determines machine epsilon is included in the code [6] in order
to make it portable.

The transformation formulas used to calculate the hypergeometric function when
z is not between 0 and 3 involve gamma functions. Many programs exist for calculat-
ing the gamma function, but only for positive values of the argument. Thus it was
necessary to write a more general gamma function routine, which would be portable
and would allow for negative arguments. To do this, the expansions

26

I'(x + 1) = ckTu(2x), 1 =x= 1 (36)
k=0 2 2
26

Fx+1)=> clTi2x—1), 0=x=1 (37)
k=0
26 1 3

L(x+1) = cil'T(2x —2), F=x=3 (38)
k=0

are needed, where T(x) is a Tchebychev polynomial of the first kind which obeys
the recurrence relation

Tir1(x) = 2xTi(x) — Tioq(x). 39)

Clenshaw’s recurrence formula [9] is applied to (37) with the coefficients ¢} known
to 20 significant digits [10] and tabulated in the program function G(X). If the
argument of the gamma function is not in the range specified by (37), the program
function GAMM(X) will either step up the argument using I'(x + 1) = I'(x + 2)/
(x + 1) or step down the argument using I'(x + 1) = xI'(x) until the argument is
in range. Once the argument is in range, GAMM calls G(X) which performs the
Clenshaw recurrence. An important point to notice is that whenever 1/I'(x) is
needed, 1/T'(x) = x/T'(x + 1) is used until the argument is greater than zero in
order to handle any possible divergences of the gamma function. Once (37) has
been calculated, it can be used to determine the unknown coefficients, c; and
¢, in the other two expansions (36) and (38) which are needed when forming
finite differences of gamma functions.

The majority of the program coding consists of the exceptional cases presented
in Section IIB. The most tedious calculations are the finite differences of the form

3 1 1
§(e) = [F(x +1+g) I(x+ 1)}/8' (40)

If x > 1, we can write this as

1 [F(x+ l+e)— T+ 1)] (41)

8(e) = Tx+1DI'(x+1+¢g) €
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The gamma function arguments can be stepped down using the identity

[r(x +lte) - T+ 1)} _ [Hx +e) = W] cHTe) (@)

& &

until x < 1. Applying (36), (37), and (38), we get

[F(x+1+s)—F(x+1)

&€

} - S ety “3)

when x is near zero,

&€

[I‘(x+1+s)—r(x+1)} =§cing(x) (44)
k=0

when x is in the middle of the range (0, 1), and

[r(x+1+s)—r(x+1)

|- $ o (45)

when x is near one, where

Ti(2(x + &) — Tu(2%)

Fi(x)= . (46)
Fiy = HOE O =D - Tir b W)
Fi”(x) — Tu(2(x + &) — z) — Ti(2x — 2)‘ (48)
The recursion relations
Fi(x) =47 1(2(x + ) + (4x)Fi,1(x) - Fi—z(x), (49)
Fil(x) =4T; 1Q2(x + &) = 1) + (4x = 2)FiL(x) — FiL,5(x), (50)
Fil(x) = 4T 1(2(x + &) — 2) + (4x — 4)Fi(x) — Fil,(x) (51)

can be found, where the starting points are Ty(x) = 1, Ti(x) = x, Fi(x) = 0, and
Fi(x) = 2 with i = I, II, III. The gamma function difference quotient can now
be summed.

If x <0, the gamma function arguments in (40) can be stepped up using the identity

x+1+e x+1
g(s):[r(x+2+s)_r(x+2)}/8

_ 1 1 x+1+ 1
F'x+2+e) T'(x+2)]| e Tx+2+¢)

(52)
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TABLE 11
Numerical Testing of the Hypergeometric Function Code Using the Identity
2F1(0.5, 15 1.5; —z%) = tan~'(z)/z

Case z N Error
1 1.2 38 5X10 5
1 14 31 1 x 10716
1 1.6 26 1 x 10
1 1.8 23 1 X 1071
1 2.0 21 4 X 1071
n 0.2 9 3 x 10716
I 0.4 15 1 X 107
1I 0.6 22 6 X 1071
11 0.8 31 1 x 1071
1I 1.0 43 3 X 1071

until the arguments are in the proper range. Once in range, the term in brackets
will look like

[ 11 ]/_ -1 {F(x’+1+s)—r(x’+l)}
T +1+e) T +D|/ ° TG +DIx +1+e) &

(53)

and the procedure outlined above for calculating the gamma function difference
quotient can again be used. Further programming details are provided in Appen-
dix B.

B. Numerical Testing

The program HYPTEST has been included in [6] for testing the hypergeometric
function subroutine HYP using the identities:

2Fi(5,1;1.5; —z%) = tan"'(2)/z (54)
2F1(1,1;2;2) = —log(1 — z)/z (55)
2F](_(l, b, b, _Z) = (1 + Z)a. (56)

Results of the tests are presented in Tables II-IV which indicate that the program
is reliable to machine double precision. Extension to quadruple precision should
be straightforward. The truncation number N is also given in Tables II-IV to
indicate the efficiency of the code. In many cases, the value of N is larger than it
needs to be since the algorithm (see Section IIIA) is very conservative.

The transformation equations of Section IIA were used with small values of
e to test the exceptional cases of Section IIB. Table V shows the deterioration in
the numerical accuracy of the transformation equations (2), (4), (6), and (7) for
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TABLE III
Numerical Testing of the Hypergeometric Function Code Using the Identity
2Fi(1, 1525 7) = —log(1 — 2)/z

Case z N Error
11 0.1 14 2 X 10 1
11 0.2 20 4 X 10716
11 0.3 27 1 x 10716
11 04 35 3 X 1071
v 0.5 60 1 x 1071
v 0.6 45 6 x 10710
v 0.7 35 1 X 107
v 0.8 30 1 x 1071
v 0.9 20 2 X 10716

2F1(1,2 + &; 3; 7) as € approaches zero. The finite difference results given in Section
IIC provide the desired machine precision accuracy for such cases.

IV. CONCLUSION

We have described the details of a very efficient FORTRAN program designed
to compute the hypergeometric function of a real variable for arbitrary real parame-
ters. The transformation theory of the hypergeometric function was used to obtain
rapidly convergent power series. The divergences that occur in the individual terms
of the transformation for integer parameters were removed using a finite difference
technique. Many of the methods used in the present work should be applicable to
the more difficult problem of computing the hypergeometric function of a complex
variable. Preliminary code for this extension can also be found in [6].

TABLE 1V
Numerical Testing of the Hypergeometric Function Code Using the Identity
Fi(—a, b3 b; —z) = 1+ 2)°fora=—5and b =1

Case z N Error
Vv -1.2 10 3 x 1071
v —1.4 10 9 x 10716
v -1.6 10 8 X 10716
A% -1.8 10 9 x 10710
v -2.0 10 1 x 10°1°
V1 22 65 1 x 10716
V1 —24 60 3 x 1071
VI —2.6 55 1 x 10716
V1 -2.8 50 4 x 10716

VI -3.0 45 6 X 1071°
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TABLE V
Numerical Roundoff Error in the Transformation Formulas of Section IIA for
2F1(1, 2 + &3 35 ) as € Approaches Zero

e z=-2 z =07 z=15 z=3
10! 4 x10 4 7% 10 15 1x10 15 7 %1015
1072 4 x 1071 4 x 1071 1x 107 2 X 1071
103 5 x 10712 8 x 10713 2 x 10713 2 x 10712
104 4 x 1011 1 x 101 3 x 10712 2 x 1071
10-3 5% 107 2 x 1071 7 X 10712 2 X 10710
106 5x10°° 5 x 10710 2 x 101! 2 X 107°
107 5x108 4 x10°° 3 x 10710 2x10°8
108 6 x 1077 3 x10°° 5x10°° 2 x 1077
10-° 5% 10 6 x 1077 5% 1078 2 X 107
10710 5 X107 8 X 107 2 X 107 7 X 107
101 5x 10 5x 1073 1x 107 9 X 10°3
1012 5x1073 8 x 10~ 1 x 10 1 x 1073
10 B3 5X107? 6 x10°3 6 X104 4 x10°3
10~ 5x 107! 3x1073 2 %1073 2 X107
10715 6 x 1070 3 x 102 2 x 107! 1x 107!

APPENDIX A: FUNCTION DEFINITIONS

Shown below are the definitions of the f-functions that are used to obtain the
finite difference results of Section IIC

7 e n E(a_k_s)rH—k
fl( s ) F(d) 5

e n E(c—a+k+s),,
fa(esm) I'(c —a) ’

Pi(ein) = (<18 el (—k = — o),
fie;n) = (=1)"el'(—n + &),

é(S, n) = waﬂzfe,

TR 1
fe(e) = I'a—k—¢)
10N — 1
) = F e ar ko)
Vag . o\ (a+k+e),
fl (S’H)_ r(a) s
Wap . o\ (b+k+e),
HE =T

FH¥e(s1n) = (~1Y*"sT(—k = n — ),
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fiV(e;n) = (—1)"el'(—n + &),
gVa(s; }’l) = Wk+n+e’

1Va = 1
[ = kT ey

1
1Va =
) = T kT ey

Vb( ... _ (d —k+ 8)/1+k
fl (8’ I’l) - F(a)

Wy = &~ K+ &k
f2 b(s’ l’l) - F(b)

F¥esn) = (<1)el (= — o),
fiV(e;n) = (—1)""*el[(—k — n + &),
ng(s; n) = Wn+s’

. _ 1
ﬁw@y‘na—k+8y

1
1Vb =
O vy

(@)icsn
Tc—b)I'(b—n+eg)

Fu(e) = cos(e).
f¥(e;n) = (—1)"el'(—n + &),
fYa(e;n) = (—1)*"el(—n — k — &),

f;/a(s; I’l) = wn+k+s,

1“(esn) =

Va = 1
fe'(e) = I'(a+e)

(a —k+ 8)k+,,
I'(a)

Vi . — 1
h%&m_F@—k—n+@’

Yo(g;n) = (—1)el'(—n — &),
fiP(e;n) = (—1)y"*kel'(—k — n + ¢),

f;/b(s; Vl) = wn+e,

1(esn) =
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f¥¢(e) = cos(me),

Vb = 1
I =t =k + oy

ey =i,

(1—c+b+ &)
Tc—=b—-¢g) °

Yi(e;n) = (—1)"el'(—n + &),

Yi(esn) =

¥ (e;n) = (—1)"*el'(—n — k — &),

fg/l(s; I’l) = Wa+n—s’

() = cos(me),

Vi = 1
R vyt

APPENDIX B: FUNCTION EVALUATION
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In the FORTRAN code for exceptional case I, called FIX1, the functions
fi(e; n) and fi(e; n) are calculated using the Pochhammer recursion (25) while the

functions f4(e; n) and fi(e; n) are calculated recursively using the formulas

o fin—1)
(&m) = T e
and
(-1
Fitemy ==L,

starting at
fi(e; —k) = -T'(1 — &)
and

fi(e;0) =T + &).

The g functions are calculated as

(B1)

(B2)

(B3)

(B4)
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I( . _ 1 (d —k— 8)/1+ - (Ll B k)n+
e = | ; d

=(a—e+n—1)gl(e;n—1) - @ Burin _Fl(?l;””, (BS)
I 1 (c—a+k+e),—(c—a+k),
g2(8’n) - F(C _ d) |: e j|
=(c—a+k+s+n—1)85(8;n—1)+—(C;(Ztg”_1, (B6)
(e ):gé(s;n— D f0n—1)
B T e (ktn)k+n+te)
_giesn—1) 1
T ktnte (ktntektml (B7)
gi(esn) = g‘[‘(z;f ; D, fi(?’;l”_;)l)
i(esn—1) 1
- I’lfs +(n—8)n!’ (B8)
g5(ein) = wgs(esn — 1), (BY)

with the starting points:

gile;—k)=0,
g3(e:0) =0,
I'a—-—¢)—-1ra
gi(e; —k) = T =e) =T M) 82 ( ),
I'l+¢&)-T(1
gl(e:0) =TT =T 833 O
gl(e;0) _wrowt

The starting points, gi(e; —k) and gi(e;0), are calculated using (43) while the
remaining g functions, gé(e) and gj(e), are calculated by the method outlined
beginning with Eq. (40).

The FORTRAN code for exceptional case IV was divided into two subroutines
called FIX4A and FIX4B corresponding to (9) and (10), respectively. In FIX4A,
the functions f1%(e; n) and f1"%(e; n) are calculated using (25) while f5"“(e; n) and
fiVe(e; n) are calculated using the formulas

éVa(n_l)
k+n+e

f(esn) = (B10)

and
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)

— &

f[\/a(8 I’l)
starting at
fia(e; —k) = -T(1 — &)
and
fi¥a(e;0) =T + &).

The g functions are calculated as

. 1 [(@a+k+eg),—(a+k),
gi"(esn) = F(a)[ .
(a + k)nfl
= — a( .. _
(a+tk+e+n—1gi"e;n 1)+—F(a) ,
1 |[(b+k+e),—(b+k),
IVa
0= 15| .
(b + k)n*l
+k+e+n—1)ge -1 +—"
=(b+k+tet+tn—1)gd(e;n—1) Th)
Wagpy < Bo(en 1) ji"(Oin—1)
g3 e k+n+e (k+n)(k+n+e)
_8¥esn—1) 1
k+n+e (k+n+e)k+n)
g4 (esn — 1) f’V“(O n—1)
gf‘Va(g; n) W — & n(n — g)
g4 (e:n — 1) L1
n—e (n—¢&)n’

g (e;n) = wgli(e;n — 1),

with the starting points:

g1"(e;0) =0,
IVa(8 0) 0
gVa(e; —k) = _w’

giva(e;0) = w

k+e _ 4,k
g1 (e10) =
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(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)
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The starting points, g4V“(e; —k) and g4"“(e; 0), are calculated using (43) while the
remaining g functions, g£"%(¢) and g4"*(¢), are calculated by the method outlined,
beginning with Eq. (40).

In FIX4B, the functions f1"°(e; n) and f5"*(e; n) are calculated using (25) while

f5%(e; n) and f1Y’(e; n) are calculated using the formulas

e =20 =D (B19)
and
firesny =L 0D, (820)
starting at
f3%(e;0) = =T (1 — &) (B21)
and
fiVo(e; —k) =T(1 + &). (B22)
The g functions are calculated as
PR (= S RETES
=(a+te+n—1)gV(e;n—1)+ (@ = Kens }2;“’1, (B23)
gVe(e;n) = F(lb) [(b —k+ 8)k+; - (b - k)k+n:|
=(b+e+n—1)gV(e;n—1)+ % (B24)
gP(esn) = gé%}gins_ D " +18)n!, (B25)
g8 m) = gi:is;n—_sl) e .1) ek (B26)
g8 (e;n) = wgt’(e;n — 1), (B27)

with the starting points:
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giV(es —k) =0,
gV(e:—k) =0,

r'd-e—-TQ1)

Ivb . = — - J N7

g5"(e;0) e >
I'a+e—-T0)

IVb( oo _ 1) —

84 (8’ k) e ’

g(e:0) = =L

The starting points, g5"*(e; 0) and g4"*(e; —k), are calculated using (43) while the
remaining g functions, g¢"°(¢) and g4"*(e), are calculated by the method outlined
beginning with Eq. (40).

The FORTRAN code for exceptional case V was divided into two subroutines
called FIX5A and FIX5B in analogy to case IV. In FIX5A, the function f{“(e; n)
is calculated using (25) while the functions f¥(e; n) and fY(e; n) are found by
noticing that f¥(e; n) = f1V(e; n) and f¥(e; n) = f5V(e; n). The g functions are
calculated as follows:

va( ... _ 1 (C_b_k_s)k+r1_(c_b_k)k+r1 1
e - g | |

I'(b—n+e) I'(b —n)
1 {[ 1 1 }(c—b—k—s)kﬂ,
" T(c—b)||T(b—n+e) T(b-—n) €

&

(C -b—k-—- 8)k+n - (C -b- k)k+n 1
! [ e ] I(b - n)}’ (B28)
g¥(e) = % (B29)
g3(esn) = g4 (e;n), (B30)
gi'(ein) = g5"(e;n), (B31)
g5(ein) = wg§(esn — 1). (B32)

The quantities in brackets in the definition of g{“(e; n) above are found in analogy
with the previously discussed cases. The functions needed in FIX5B and FIX6 (the
program name for exceptional case VI) are found in analogy with the functions
discussed above.
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