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ABSTRACT

We present a theoretical model and database designed to provide analysis of astrophysical X-ray
absorption fine structure (XAFS). The model includes spherical wave corrections and multiple-scattering
contributions to the modification of the X-ray absorption coefficient. The model and database provide
the basis for the astrophysical XAFS analysis (AXA) tool, which may be used to analyze properties of
interstellar grains and molecules from high-resolution X-ray spectra expected to be observed by future
satellite missions (e.g., the Advanced X-ray Astrophysics Facility).

Subject headings: dust, extinction — galaxies: ISM — techniques: spectroscopic — X-rays: galaxies

1. INTRODUCTION

High-resolution (E/AE ~ 1000) X-ray spectrometers on
board future satellite missions (e.g., the Advanced X-ray
Astrophysics Facility [AXAF]) have opened up a new
window to study the properties of interstellar grains and
molecules (Woo 1995). Analysis of the X-ray absorption fine
structure (XAFS) in the observed spectra allows for a deeper
probing of the interstellar medium than other traditional
methods of study such as optical or near-optical astronomy
(Martin 1970; Evans 1986). Since XAFS is produced by the
interference of an outgoing photoelectron wave from a
central atom with scattered waves from nearby atoms, it has
the capability to provide detailed information about the
type, structure, and state of the matter in the interstellar
medium. In order to facilitate the use of XAFS to explore
previously unknown properties of interstellar molecules
and grains, we have initiated a project (Woo, Forrey, & Cho
1997) aimed at providing the astrophysics community with
suitable theoretical tools and an easily accessible database
for analyzing astrophysical spectra.

Much work has been done on XAFS by the condensed
matter community in recent years (Muller & Schaich 1983;
Gurman, Binsted, & Ross 1984; Barton & Shirley 1985;
Rehr et al. 1986; McKale et al. 1988; Rehr & Albers 1990;
Mustre de Leon et al. 1991; Rehr, Albers, & Zabinsky 1992;
Zabinsky et al. 1995), and elaborate codes have been devel-
oped for the analysis of laboratory XAFS data (Filipponi et
al. 1991; Newville et al. 1995). Spherical wave multiple-
scattering (SWMS) theories have provided a framework
that now appears capable of providing a complete account
of the energy dependence of XAFS for laboratory samples.
As a result, different strategies for including SWMS into the
analysis of XAFS data have been implemented. Semi-
empirical models have been developed that rely on experi-
mental fitting parameters to compensate for theoretical
errors. Sophisticated ab initio models designed to provide
high-accuracy theoretical standards have also been devel-
oped (Rehr & Albers 1990; Mustre de Leon et al. 1991;
Rehr et al. 1992). Our objective is to produce a simple
model that includes the important physics needed for ade-
quately describing astrophysical spectra. In constructing a
model for astrophysical XAFS, we anticipate structural dif-
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ferences to exist between interstellar molecules and grains
and laboratory samples. We expect thermal disorder, which
normally smears out much of the fine detail of photoab-
sorption spectra at room temperature, to play a less signifi-
cant role at the low temperatures of the interstellar medium.
An efficient determination of SWMS is necessary for allow-
ing extraction of detailed information on the static structur-
al disorder of astrophysical grains and molecules.
Therefore, we use a hybrid approach that retains much of
the simplicity of semiempirical models while at the same
time incorporates many of the advances of full ab initio
SWMS theories. The model has sufficient flexibility to simu-
late an arbitrary chemical environment. It supports differ-
ent levels of approximation and permits the ready
determination of energies and geometries at which the
effects of multiple scattering become significant.

We solve the relativistic Kohn-Sham equation self-
consistently to get the electron density function for any
atomic system of interest. A complex self-energy potential
(Hedin & Lundqvist 1969) is constructed from the density
function, and the Schrodinger equation containing the self-
energy potential is solved numerically for the individual
scattering amplitudes. Electron scattering in a molecule or
solid is described using a multiple-scattering formulation
with a standard “muffin-tin” procedure to account for the
surrounding atoms. At low energies the scattering ampli-
tudes include spherical wave effects that depend on the
interatomic distance. The single-scattering contributions
are described by the exact spherical wave formulation of
Rehr et al. (1986). Multiple scattering is incorporated into
the model using an approximate spherical wave treatment.
The high-energy extended XAFS (EXAFS) can be described
by using exact spherical waves or by the usual plane wave
approximation (PWA) with an energy shift.

In our previous work (Woo et al. 1997), we presented the
astrophysical EXAFS analysis (AEA) tool. Here we present
the more general astrophysical XAFS analysis (AXA) tool.
As before, we have designed the tool so that a user with a
limited understanding of the theoretical aspects of numeri-
cal modeling can easily access the database and use it to
study XAFS within a limited personal/workstation com-
puter facility. We note that the tools may also be useful for
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calibrating X-ray spectrometers that must account for
XAFS in their instrumental response (e.g., Owens et al.
1997). The details of the theoretical model are presented in
§ 2. In § 3 we describe the AXA tool and provide some
numerical examples.

2. THEORETICAL XAFS MODEL

The theoretical formulation of XAFS can be found in
many articles (see, e.g., Lee & Pendry 1975), so we give only
a brief outline of the theory here. Since it is our hope that
the present model will provide a foundation for analyzing
astrophysical XAFS, we have included complete derivations
that make clear all approximations that are made.

The oscillatory absorption coefficient normalized to a
smooth absorption coefficient u, of an isolated atom is
given by

K — Ho )

where u is the absorption coefficient of the center atom of
the many-atom system (molecule or condensed matter). The
X-ray absorption coefficient u can be calculated by Fermi’s
Golden Rule within the dipole approximation for the
photon-induced transition of an electron from initial state
|i) to afinal state | f):

p~IKSflerli 2, @

where € is the polarization vector of the photon and r is the
electron coordinate. For an isolated atom, the final state
consists of an ionized atom plus an ejected photoelectron.
For a multiatomic system, the final state is defined by

If>=lZ(1+M1m)Ilm>, &)

where M,,, gives the modification of the final state due to
scattering from the neighboring atoms. Using equations (2)
and (3) gives the general expression
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The random orientation of atoms in the sample is taken
into account by averaging over the X-ray beam direction
using
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which yields
p~ Y Y | D P+ My, + M3, + [ My, %) . (6)
Im

The scattered waves are generally weak enough that the
squared term in equation (6) can be neglected. The final
angular momentum is determined by the selection rule | = [;
+ 1. For cases where both final angular momentum states
are allowed, the [ = [; + 1 term always dominates the | = [
— 1 term (Gurman et al. 1984). Therefore, the sum over
angular momentum in equation (6) can generally be
replaced by one term. The definition in equation (1) is then
used to get the oscillatory absorption coefficient

(k) =2 Re <Z M lm> : 0

For a K-edge transition, | i) is the 1s core state of the X-ray—
absorbing atom and [ = 1. In general, the matrix element
M,,, can be expressed as (Lee & Pendry 1975)

1

M, =——
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where §, is the central atom phase shift, and Z,,, ;.. is the
transition matrix connecting the outgoing wave at the
central atom with the interfering wave produced by scat-
tering from neighboring atoms. The unknown Z,,, ;.- can
be evaluated by expanding in a multiple-scattering series

> [Zivw + Zi v + -1, ©

paths
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where the summation is over all possible paths and the
superscript indicates the number of collisions. Using the
PWA to get the single-scattering term Z{)) ;, gives the
usual EXAFS formula

exp (2ikr + 2id,) - 2072
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where
£ = ﬁ I§O(2l + 1)(S; — 1)P/(cos 0) (11)

is the scattering amplitude and o is a Debye-Waller factor.
For astrophysical grains, thermal vibrations due to the cold
temperatures of interstellar space (e.g., T ~ 10-100 K)
should be negligible. Therefore, we expect that Debye-
Waller factors for astrophysical XAFS will contain detailed
information on the static structural disorder of the grains,
particularly in the low-energy part of the spectrum. To
accurately describe the low-energy spectra, it is necessary to
include spherical wave corrections and multiple-scattering
effects into the XAFS model.

2.1. Spherical Waves

Spherical wave corrections to the PWA for XAFS have
been successful in explaining discrepancies between theory
and experiment for low energies (Muller & Schaich 1983;
Rehr et al. 1986; Rehr & Albers 1990). In the present work,
we use the spherical wave approximation (SWA) of Rehr et
al. (1986). The single-scattering term of equation (9) is
obtained from the expansion

Zlm 'm — %IZ,’Glm,l”m”(_r)(Sl” - 1)Gl”m",l’m'(r) s (12)

where r is the position of the neighboring atom from the
center atom, §; is the scattering matrix element, and
G, (1) 1s the free propagator

ikr
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where r has been chosen to lie along the z-axis and g{}™P(kr)
is a radial function derived in Appendix A. For an s-wave
initial state, [ = 1 and the result is

exp (2ikr)

z Z(11r3; im = 3f(r5 TC) Zikrz s (14)
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where

f@r, 0= Z_:k 120(21 + 1)(S;—1)P(cos )

« [(l + )ty 4 (kr) + Ict 1(kr):| . (15)
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The function c/(x) = i'x exp (—ix)h{*)(x) is defined by
h{*)(x) = ih{")(x) where h{*)(x) is a spherical Hankel function
of the first kind. We note that since the free Green’s func-
tion, equation (13), is exact, the SWA given by equation (14)
is an exact first-order spherical wave-scattering theory.
Approximate spherical wave theories such as the point-
scattering approximation (PSA) can be derived by assuming
that the Green’s function has the separable form
'kr

G, vm (1) = 4nY (P Y, (r) — clkneykr) . (16)
Using equations (12) and (16), it is easy to show that the
PSA is equivalent to replacing the SWA formulae, equa-

tions (14) and (15), with

exp (2ikr)
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and
fr, v, 0= 21k Z (21 + 1)(S; — 1)P,(cos O)c(kr)c(kr') .

(18)

For comparison, the PSA of Lee & Pendry (1975) is given
by the effective spherical wave amplitude (see Appendix B)

~ 1 2
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In the high-energy limit, the asymptotic expansion
h{V(kr) ~ (—i)'*! exp (ikr)/kr implies that c(kr) ~ 1, and
the SWA and PSA amplitudes equations (15), (18), and (19)
reduce to the usual PWA amplitude f(6) given in equation
(11).
2.2. Multiple Scattering

The multiple-scattering terms of expansion equation (9)
are defined by assuming that the photoelectron is scattered
first by an atom located at r,, followed by an atom located
at r,, and so on. The exact double-scattering term Z{2) ., is
obtained from the following generalization of equation (12):

Zgrzn),l’m Z ZGlm lzmz( "2)(S12 1)

8 lim1 lamy
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Higher order multiple-scattering terms are similarly
obtained. For diatomic molecules, the even-order multiple-
scattering terms are absent, and the odd-order terms can be
obtained recursively from

Zﬁ'r’,f 'm = — Z Zgnm_lzr)n(sl - 1)Z§}r)n”,l’m’ > (21)
"m”

where Z{}) .. is evaluated from equation (A5). We note that

equation (21) provides an exact spherical wave treatment of

multiple scattering for diatomic molecules. For large mol-

ecules and crystals, the multiple-scattering contributions to
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XAFS such as equation (20) are difficult to analyze and
compute because of angular momentum coupling. There-
fore, we use the separable PSA propagator equation (16)
when considering double and higher order multiple-
scattering contributions for such systems. The second-order
result is

Z Zgrzn)lm = —(2l + 1)P/(cos 9)f(’"1a 12, 0;)

X f("z, T12, 05)ckry)ei(kr,)

exp [ik(ry +r, + "12)]
2ikr 1,11,
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where 0, is the angle between r, and r,,, which arises from
the first collision, 6, is the angle between r,, and r,, which
arises from the second collision, and 6 =60, + 0, — =.
Extension to higher order scattering is straightforward. The
usual PWA (see Appendix B) is recovered in the high-energy
limit

Z Z) m = — (2l + 1)P(cos 0)f(0,)1(62)

y exp [ik(ry +r, + 712)]
2ikr r, 7,

(23)
For the K-edge
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Normally, the individual terms of the expansion (24) can be
analyzed separately using Fourier transform techniques.
Therefore, it is conventional to define a length parameter L
whose value determines what terms in equation (24) need to
be considered. In the next section, we give an example that
relates L to the number of terms in the multiple-scattering
expansion (24).

3. AXA TOOL AND DATABASE

We have built the AXA tool to have the flexibility needed
to calculate XAFS for any desired compound. The basic
steps used by the AXA tool are as follows: The relativistic
Kohn-Sham equation is solved self-consistently to get the
density function for any atomic system of interest. Electron-
atom scattering is described by replacing the Dyson equa-
tion for the single-particle Green’s function by a
Schrodinger equation with a complex self-energy potential.
This step requires the use of the plasmon pole approx-
imation in which the excitations of an electron gas are
replaced by a single pole (Hedin & Lundqvist 1969). It has
been shown (Lee & Beni 1977; Mustre de Leon et al. 1991)
that the self-energy acts as an effective potential that ade-
quately accounts for the exchange and correlation effects
caused by the electrons in a single atom. The electron-atom
scattering amplitudes are used within a multiple-scattering
formulation that accounts for the surrounding atoms. The
multiple-scattering method uses a standard muffin-tin pro-
cedure to isolate the individual atoms in the molecule or
crystal. The Schrodinger equation containing the self-
energy potential is solved numerically for the individual
scattering amplitudes. The models include spherical wave
effects that depend on the interatomic distance.

exp [ik(r, +r, + 7‘12)]
kriryry,

x f(02)
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The database contains electron densities for all elements
with atomic numbers up to 92. The AXA tool uses the
electron density to compute the self-energy potential as a
function of k in atomic units. The absorption coefficient y(k)
is then calculated in two steps. In the first step, the single-
scattering contributions are computed from the interatomic
distances and bond angles. The scattering amplitude
is stored as a function of the shifted momentum k —
[k? — Vyyr(k)]?, where Vy(k) is the energy-dependent
potential at the muffin-tin radius. In the second step, the
central atom phase shift is computed and the desired
multiple-scattering contributions are added. The present
version of the AXA tool contains an input flag that deter-
mines which single-scattering approximation is to be used.
Other inputs include the muffin-tin radius and energy
threshold, which allow the user some flexibility when mod-
eling XAFS.

3.1. Spherical Wave Code

In order to calibrate our spherical wave code, we studied
the scattering amplitudes given by equations (11), (15), and
(18) for Cu as a function of k. The muffin-tin radius was
chosen to be half the interatomic distance of 4.8 a.u. The
results, shown in Figure 1, are consistent with the calcu-
lations of Rehr et al. (1986). As expected, the scattering
amplitude of equation (18) gives a better approximation to
the exact spherical wave amplitude of equation (15) than
does the usual PWA amplitude of equation (11). This is
because equation (18) retains some spherical wave informa-
tion because of the polynomial part of the outgoing spher-
ical Hankel function, whereas equation (11) does not. The
PSA agrees very well with the SWA above 4 a.u., whereas
the PWA must shift the energy reference in order to obtain
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agreement. All of the amplitudes have a cusp at k =1 a.u.
because of the onset of plasmon excitations.

3.2. Multiple-Scattering Code

In order to test our multiple-scattering code, we studied
the case of the O, molecule. Rehr et al. (1992) provided an
interpretation of the ¢* shape resonance for O, based on
high-order SWMS calculations. They found that the reso-
nance was due to the constructive interference of many col-
lisions between the two scattering centers. Using the PSA
described above, we obtain results that are very similar to
the exact SWMS calculations (Rehr et al. 1992). Figure 2
shows the weighted absorption coefficient k*y(k) as a func-
tion of k. The individual terms of the multiple-scattering
expansion are shown in Figure 2a. The number n refers to
the superscript in equation (9). At small values of k, the
terms add together to enhance and sharpen the resonance.
This is shown in Figure 2b where the partial sums are given
through fifth order. For our calculations, the muffin-tin
radius was chosen to be half the interatomic spacing of 2.28
a.u. and the energy threshold was assumed to be zero. The
position of the resonance can be moved into agreement with
experiment by shifting the energy threshold.

3.3. Reduction of Variables

One difficulty that typically arises in modeling XAFS
data is dealing with many unknown variables. In order to
reduce the number of variables in a multiple-scattering
expansion, we have implemented some well-tested modeling
ideas (Teo 1985). For example, we considered the case of a
triatomic molecule in which atoms 1 and 2 are nearly
colinear with the central atom 0 and r, > r;. In this case,
there are three separate paths that correspond to approx-

3.0 T T T T T T

phase (rad)

1 1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

-05 1 1
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FIG. 1.—(a) Magnitude and (b) phase of the scattering amplitude approximations for copper. The dotted curve is f(n) (eq. [11]), the dashed curve is f (r,r,7)

(eq. [18]), and the solid curve is f (r, 7) (eq. [15]).
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Fic. 2—Weighted absorption coefficient k?y(k) for the O, molecule. The individual terms of the multiple-scattering expansion are shown in panel a and

the partial sums are shown in panel b.
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F1G. 3—(a) Amplitude modification Q and (b) phase modification w due to multiple scattering in oxygen. The curves correspond to 6, = 0°, 10°,

20°,...,60°
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imately the same path length L, namely, L ~ 2r, ~ 1, + 1,
+ ry, & 2(r; + rq,). The oscillatory absorption coefficient
is therefore given by

exp (2ikr,)
kr?
exp [ik(r; +r, + 715)]

kriryry,

exp [2ik(r, + rlz)]} 25)

krf 7%2

x1(k) = —Im eml{f(n) +2cos 0 £(0,)

x f(0,)

+f(0)f(0)f(6,)

where the second term is counted twice since0 > 1 -2 -0
gives the same contribution as 0 » 2 —» 1 —» 0. Following
Teo (1985), we assume 6, ~ 0 and 0, ~ =, so that equation
(25) can be rewritten as

exp (2ikr, +2id,)
kr?

x1(k) = —Im f(x)

x {1 + 2 £(0,) exp [ikir, — 1, + ru)]}2 . (26)

r.r
The definitions
2
r .
Q=|1+—2 f(0,) exp [ik(ry —7r, +r12)]1| 5, (27)
SREY)
T, 2
w=arg<l+ - f(0,) exp [ik(ry —ry + 11,)] (28)
1712

allow the multiple-scattering result to be expressed as a
single-scattering term with a modified amplitude and phase.
It was pointed out by Teo (1985) that although the above
formulation was derived under the assumption 6, ~ 0, it
can also be used for large angles without introducing signifi-
cant error into the calculation. Figure 3 shows Q and w as
functions of 6, and k for the case of three oxygen atoms
withr; = 1.95 A and r,, = 1.28 A. In these calculations, the
muffin-tin potentials were overlapped (i.e., no muffin-tin
radius was used), which contributes an error of a few eV
(Lee & Beni 1977). Our results are consistent with earlier
calculations by Teo (1985) when 6, > 10. At smaller angles,
however, we find stronger amplitude enhancement (Q2 > 1),
probably due to differences in the self-energy potentials. At
large angles, amplitude reduction (Q < 1) also occurs as a
result of multiple scattering. The phase modification w
depends more weakly on 6, and k.

4. DISCUSSION

We have computed the single-scattering contribution to
XAFS using the exact spherical wave formula equation (15).
Our results agree well with those of Rehr et al. (1986) for the
case of Cu. The exact spherical wave double-scattering con-

tribution to XAFS given by equation (20) does not separate
into products of single-scattering contributions and is diffi-
cult to compute. Therefore, we use an approximate spher-
ical wave approach when considering double and higher
order multiple-scattering contributions to XAFS. Such a
procedure greatly simplifies the numerical evaluation of
multiple-scattering effects and provides a qualitative under-
standing of the important pathways that need to be con-
sidered. Our calculations of the multiple-scattering
contributions for O, show convergence behavior that is
similar to the exact SWMS calculations of Rehr et al. (1992).
Therefore, we believe that approximate spherical waves for
the higher order (n > 1) terms should be adequate for the
purpose of analyzing astrophysical spectra.

Since one of our objectives was to produce simple models
that get most of the physics correct, we have included a flag
in the AXA tool that allows the user to reduce the number
of parameters in a multiple-scattering expansion by using
the single-scattering formula with amplitude and phase
modification. We have computed the amplitude and phase
modifications (Q and w) for oxygen due to the coherent sum
of three multiple-scattering pathways. Significant amplitude
enhancement occurs when the scattering angle is small. For
these angles, it is extremely important to include multiple
scattering into the model. Amplitude reduction also occurs
as a result of multiple scattering. The capability for model-
ing multiple scattering using a small number of parameters
should be a useful first step when analyzing astrophysical
spectra.

5. CONCLUSION

We have presented a theoretical model and database
designed to provide analysis of astrophysical XAFS. The
theoretical model uses a hybrid treatment of exact spherical
waves for single scattering and approximate spherical waves
for multiple scattering. The model and database form the
basis for the AXA tool, which we developed in order to
analyze the properties of interstellar grains and molecules.
The AXA tool extends our previous AEA tool (Woo et al.
1997) to include lower energies, and provides a foundation
for further development of numerical XAFS models that
may be needed to analyze the high-resolution X-ray spectra
expected to be observed by future satellite missions (e.g.,
AXAF).
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APPENDIX A

DERIVATION OF SWA

The angular momentum representation of the free propagator is given by (Lee & Pendry 1975; Ashley & Doniach 1975;

Schaich 1973)

G, vm () = 41 Y I | 'm" | ' 53" HD(RT)Y poe(F) 5 (A1)

"m”
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where <I,, m, |1, m, |15, m;) is a Gaunt coefficient, which can be expressed in terms of Wigner 3-j symbols via

(=™, —my | b, my |1y, my) = JYzl,ml(H, D) Yi,my(0, D) Yi;,3(0, 9)AQ

=[(zzl+1)(212+1)(213+1)]“2<h L l)( oL ’3). (A2)

4n 0 0 0/\my m, my
Using equations (A1) and (13) yields g{}™P(x) = A,,,m(x)/Bll,, where
a0 =3+ (g o ol n o) (*3)
i 0 0 oN-m m o)V
. l/ l// l l/ l//
By, —Z @+ 1)(0 0 0)<0 0 0>. (A4)
Equations (12) and (13) are used to obtain
exp (2ikr "
Z/ Zi) v = 4n? % Yi(—PY, o(") Z Sy — DYoo =AY EoP)gtis (kr)gip(kr) , (A5)
which reduces to
2
¥ 2810 =3 o T @1+ 145, DPfeos n) k) + 21k ) (46)

for the K-edge. The SWA result equation (14) is obtained by letting ' = 1 in equations (A3) and (A4) to get the radial functions
needed by equation (A6)

(I + Dy 4 (x) + I 4(x)

HEE e : (A7)

1 W+ 1) [ eryq(x) —¢q(x) A8

gi'(x) = \/ 2 |: 20+ 1 :| ’ (49
APPENDIX B

DERIVATION OF PWA

The PWA provides a conceptual basis for understanding the physical mechanisms that create XAFS. As an example, we
provide a brief derivation of the double-scattering mechanism by assuming that the photoelectron wave function can be
represented by plane waves in between each scattering center. The required plane waves are defined to be

P(r) = O(r,) exp (ik - R,), (B1)
() = D(r,) exp (ik' - R,) (B2)
P'(r) = O"(r = 0) exp (—ik" - 1) , (B3)

where R, =r—r;,r;, =v, — vy, k = ki, k' = kf;,,and k" = k#,. The desired result is obtained by expanding the plane wave
in equation (B3) and matching to

V() =2 Z Z) v Jik1) Yo (F) (B4)
which yields
ZE 1 =20 YE(—F)D"(r = 0) . (BS)
The plane wave amplitudes equations (B1)—+(B3) are given by
O(r) = Y, (F)hi (kr) , (B6)
D'(r) = D(ry) z 2mil(S, — 1)YE () Y, (R )W (KR,) , (B7)

O(r) = D'(r,) Z 27i'(S; — 1)Y} (712)Y1m(R )i D(kR5) . (BY)
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Equations (B6)—(B8) relate the amplitude of the interfering photoelectron to the amplitude of the original outgoing wave.
Using the addition theorem for spherical harmonics yields

@) = 0) (R, ) T (B)
@) = 0 (R, 0) T (B10)

where f(r, 0) is the effective spherical wave amplitude equation (19), 6, is the angle between r, and R, which arises from the
first collision, and 6, is the angle between r,, and R,, which arises from the second collision. It is worth noting that although
the derivation given above assumes plane wave behavior in between each collision, the amplitude equation (19) nevertheless

retains some spherical wave character because of the function c,(kr). Using equations (B6), (B9), and (B10) yields

’(r=0)= }/;m(fl)hg+)(krl)f~(r2s ez)f(ru: 6

which reduces to

(r = 0) = (—i) "' Y,,,(F1) £(6,) £ (62)

exp [ik(r, +1,,)]
SXEV) ’

(B11)

exp [ik(ry +r, + 115)]
kriryri,

(B12)

in the full PWA. Substituting equation (B11) and (B12) into equation (B5) yields the desired second-order result.
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