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A general method is given for the calculation of a matrix element (@] f{A4) |¢)> of an
analytic function f of an operator 4. The method begins by writing {¢| f(A4) |y ) as a
contour integral of the corresponding matrix element {o| ({—A4)~"' |¢> of the resolvent
{{— A)~"', where the contour surrounds the spectrum of 4. The contour is then deformed to
obtain {¢| f(4) |¢> as a sum of contributions from branch points and poles of f. The
numerical evaluation of the Bethe logarithm, which is the dominant contribution to the Lamb
shift, is used as an example. The difficulties which arise when the resolvent matrix element
(@l ({—A)"' > must be evaluated by approximate methods are discussed.  © 1993

Academic Press, Inc.

1. INTRODUCTION

A matrix element {¢|f{A4)|¢) of a function f of an operator 4 can be quite
difficult to compute when the function is anything more complicated than a low
order polynomial. The obvious approach of diagonalizing the operator to obtain
the matrix element as a sum over states of the form

Col L) W =) fla)lo | erLeil ¥), (L.1)

where the g, and |e,) are the eigenvalues and eigenfunctions of A4, can be ineffective
if the sum over i converges too slowly or contains continuum contributions which

* Work done in partial fulfillment of the requirements for the M.S. degree at the University of
Delaware.
88

0003-4916/93 $9.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



ANALYTIC FUNCTIONS OF OPERATORS 89

are hard to handle. It fails completely if 4 cannot be diagonalized. The present
paper will present an alternative method which works when the function f is
analytic in a neighborhood of the spectrum of A if the matrix element
(ol (C~A) |y of the resolvent of A can be calculated at the singularities of f.

This alternative method begins by writing the desired matrix element as a
Cauchy integral in the complex { plane:

LAWY =30 § | 00l = 1> =0 | (12)

i Je {(—A

Here the contour C surrounds the spectrum of 4. f({) and g({) are assumed to be
analytic within and on C. The only singularities inside the contour C are then the
singularities of the resolvent at the points of the spectrum of A. The function g({)
contributes nothing when the right-hand side of (1.2) is evaluated as a sum of
contributions from the singularities inside C, but may be needed to permit deforming
the contour C into a new contour €' which surrounds the singularities of f and g.
If such contour deformation can be carried out, a formula for the matrix element
{@| f(A) |¥> as a sum of contributions from these singularities is obtained, just as
in the familiar evaluation of definite integrals via the calculus of residues.

The Cauchy integral formula for a function f of a linear operator A, where f is
analytic in a neighborhood of the spectrum of A4, was first introduced by Dunford
f1]. Such Cauchy integrals have been a useful tool in the rigorous mathematical
analysis of Schrodinger operators; applications to perturbation theory are discussed
by Kato [2], by Reed and Simon [3, Chap. XI1], and by Hunziker [4]. However,
they have not, to the best of the authors’ knowledge, been used as a tool in a
numerical computation.

The need for accurate values of Bethe logarithms provided the initial motivation
for the use of the Cauchy integral formula (1.2) in a numerical method. For this
reason, the present paper will describe the numerical use of (1.2) primarily as a way
of evaluating Bethe logarithms. A preliminary account of this method appeared in
[5, pp- 123-145]. The method has been used by Jonathan D. Baker in Ph.D.
research under the direction of John D. Morgan III to calculate Bethe logarithms
for the ground state and first excited S state of helium; the values obtained by
Baker improve the agreement between theory and experiment for these energy
levels by two orders of magnitude. However, the method is much more widely
applicable; this paper should serve as a useful guide to the use of (1.2) for
other problems for which (1.1) is ineffective. The evaluation of logarithmic mean
excitation energies other than the Bethe logarithm via the methods of this paper
should be particularly straightforward. The various logarithmic mean excitation
energies, and the physical context in which they arise, have been discussed in [6],
where they are evaluated for hydrogen and helium. See also [7].

The accuracy of the calculated Bethe logarithms can be known only if a careful
error analysis has been performed. In order to facilitate this error analysis,
asymptotic error estimates and rigorous error bounds are provided for the numerical
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integration which is the last step in the computational method. The convergence
rate for the variational principle used to evaluate resolvent matrix elements is
examined. Methods of accelerating this convergence are provided. An error formula
for this variational principle is given; its use is illustrated by calculations on
hydrogen in a Laguerre polynomial basis.

The paper is organized as follows. Section 2 outlines the main features of the
calculation of a Bethe logarithm with the aid of (1.2), with the hydrogen ground
state Bethe logarithm as an example, and obtains a value for this Bethe logarithm
whose accuracy is limited only by the precision of the arithmetic used; this value
is given in (2.29) below. We are indebted to S. P. Goldman for informing us that he
has used the algebraic matrix method of Huff [8] to obtain comparable accuracy;
Goldman’s result agrees with ours to all but the last digit shown (Goldman was
unable to confirm our last digit because the Cyber 2000 which he used has a smaller
mantissa than the IBM 3090 on which we performed our calculations). Section 3
works out the large || asymptotic behavior of the matrix element of the resolvent
needed in the Bethe logarithm problem. Section 4 discusses a variational principle
which can be used for the approximate calculation of this matrix element of the
resolvent. Section 5 analyzes the convergence rate for this variational principle
when using a Laguerre polynomial basis, and shows how to accelerate this
convergence for large |{|. The connection of the present method of calculating
Bethe logarithms with the technique introduced by C. Schwartz [9] is outlined in
Appendix A.

2. THE BETHE LOGARITHM

The Bethe logarithm [10, pp. 94-99, 103-104, 358-359] is a fundamental term
in the theory of QED corrections in atoms and molecules. If H is the Hamiltonian,
the Bethe logarithm In K for a state [y, ) of energy E, is

InK=g/<Y,|P-(H-E,)P |y,), (2.1)
where
B=<Y,|P-(H-E)In|H-E,|Ply,>. (22)

Here P is the total electron momentum operator:

P=Yp=-iYV, (23)

with p,= —iV, the momentum of the jth electron. The Hamiltonian H will be
assumed to have the form

H=T+V (2.4)
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with
l N
T=—-z Y V? (2.5)
2 =
and
N j-1
V=% 3 e 2T 26)
j=1 k=1 I, k' j=1 k= k

This H describes a molecule in Born-Oppenheimer approximation having K nuclei
of charge Z, at the points R,, and N electrons moving nonrelativisticaily with
Coulomb interactions only. The denominator of (2.1} is easily evaluated for this
Hamiltonian: one uses (H—E,) |¢,,> =0 and V2 Ir; —~Ry| = —4n o(r;—R,) to
write

Yl P-(H-E)P Y,
=3 <Y, {P-[(H-E,),P]-[(H-E,),P]-P} |¥,>

=2n ‘z PEACAL U RIS @7

Thus the denominator in (2.1) depends only on the values of the wave function
when one electron is at a nucleus. The modifications needed when this denominator
is zero because the wave function vanishes at the nucleus are discussed in Bethe and
Salpeter [10, p. 103]. Bethe logarithm calculations for the /+# 0 excited states of
hydrogen, where this difficulty arises, have been reported by Klarsfeld and Maquet
[11] and by Drake and Swainson [12].

It is the numerator § in (2.1) which has been difficult to calculate. The formal
application of the Cauchy integral (1.2) to (2.2), with f({) = {In({), g({) =
In@) Y| P-[1+{HH-E)IPY,D, lo>=I¢¥> =P, 1y, (where P, is the jth
Cartesian component of P), and 4 = H— E,, yields

L) Wl P -1 (- E) [Py 28)

As will be shown later in Section I[II, the matrix element <y, |P-({ —
H+E,)"'P|y,> of the resolvent behaves like g({)/f()+ O(,~>?) for large (.
Thus the g({) term in (2.8) subtracts out the leading terms of the matrix element
of the resolvent, leaving an integrand in (2.8) which behaves like {~*?In({) for
large ¢.

We will now look for a suitable contour C. The function f({)={In({) has a
branch cut which runs from — o to 0 along the negative real axis. The operator
A=H-—E, has point spectrum at E,—FE, for m=0,1,2, .., and continuous
spectrum beginning at E_ — E,, where E_ is the lowest dissociation threshold for
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the Hamiltonian H. If the eigenvalues E, of H are ordered such that m <n implies
E,<E,, then the point spectrum at E, —E, for m=0, 1,2, .., n overlaps the
branch cut of f on the negative real axis, violating the assumption that f'is analytic
on the spectrum of A. This difficulty can be overcome by noting that, since |,
is the eigenvector belonging to the eigenvalue E,,, the resolvent matrix element
(P | P-((E—HA+E)"'"P|y,> has first-order poles with residue (.| P [¢,.> -
Y.l PlY,>at{=E,—E, Thus we are led to introduce the projection operators
Q" and Q' via

n—1

0= 3 ¥ >¥ml (2.9)
0]

m=

QM =71—Q" (2.10)
(where [ is the identity operator) and replace (2.8) by

1 1 1

1
- idd y O _
~ 3§ ) W P00 | - (W= B

n—1

xQUPW.>+ Y |<¥nl Py I (E,—E)In|E,~E,[.  (211)

In (2.9), it is understood that 37 _' is empty, and hence is counted as zero, for
n=0. Thus @'’ =1, and (2.11) reduces to (2.8), for n=0. We note that the pole of
the resolvent matrix element at { =0, which comes from the bound state of energy
E,, need not be subtracted out because the (™' pole term is cancelled by the { in
f({)y=CIn({). The contour C in (2.11) can now be taken to surround the
singularities of the integrand on the positive real axis as shown in Fig. 1. These
singularities include poles at E,, — E, form=n+ 1, n+ 2, n+ 3, .., and a branch cut
which runs from £ — E, to + .

Because the integrand in (2.11) behaves like { =2 In({) for large {, the contour
C can be deformed into a new contour C’ which runs clockwise around the origin
and the logarithmic branch cut on the negative real axis as shown in Fig. 1. By

logarithmic branch cut spectrum

c’ C
FiG. 1. The contour C surrounding the spectrum of H — E,, and the contour C’ surrounding the

logarithmic branch cut. Dots denote point spectrum. The branch cuts from the continuous spectrum and
the logarithm are denoted by cross hatching.
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using the fact that the discontinuity of In{) across the negative real axis is 2ni, it
can be shown that

n—1

B=BitBat T 1 PP (B, =E)In E—E|  (212)
where N

Bi={ Syt 213)

and
po= | AW aw (2.14)

with
1) = G B0 | 1] 0P 10 2.15)

and
FOVI=fO0)+ W, | P-Q0H-E) QVR >, (216)

The integrand f\(W) differs from the integrand f,(W) because the integral of
{ ""In() along the piece of the contour C' which runs from —1 + i¢ around the
origin to — 1 — ig is zero. This formulation of the problem is closely related to that
given by Schwartz [9], as is spelled out in detail in Appendix A.

Numerical integration is used to evaluate (2.13) and (2.14). The analyticity
properties of the integrands in (2.13) and (2.14) imply that a numerical integration
scheme introduced by Stenger [13, Subsection 3.2; Examples 4.1-4.4] will be
rapidly convergent. Appendix B derives the modified version of Stenger’s method
which we use and obtains error estimates.

This numerical integration scheme is

Ny h exp(kh)

hi= 2 Tt expthh)T
XfI(WL”)‘F8‘,”(/1)+8(Tl‘)*(N(~”,h)+6(7!‘)+(N(_:), ), (2.17)
N(}l
Bo= Y hexplkh) (W) +eD(h) + D (NDh) 46D (NP k), (218)
k=-N9

where the nodes W{/* are

W =exp(kh)/[1+exp(kh)], W =1+exp(kh). (2.19)
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The interpolation errors ¢{(h) are bounded by

P
e S SanT
~dnexp(—2n°h ") (Y, | P-QU(H—E,) QTP |y,). (2.20)

The truncation errors &', (N, k) and ¢?'_(N, h) are bounded by

0 —/{(WU_ ) SUN) < —&ll)_(N, h) < —£,(0) S")(N)

<exp(—Nh) Y, | P-QP |§,,>, (2.21)
0< —fi(1) SN —P) (N, )< —f, (W, ) SVU(N)
<exp(—Nh) Y, | P- QP |y,>, (2.22)
0< (WP, _ ) SP(N)<eP_(N, h) < f,(1) SP(N)
<exp(—Nh) (Y, P-QU(H—-E,) QTP |y, (2.23)
where
& hexp(kh) - kh exp( — Nkh)
(1) _ _ntepwen)y k4t
§ (N)—k}/:ﬂ [1+exp(kh)]? 121 (=D exp(kh)—1 "’ (2.24)
SOWN)= Y hexp(—kh)=hexp(— Nh)/[exp(h)— 11, (2.25)
k=N+1

The truncation error &%) (N}, h) can be estimated by using the asymptotic
expansion

C,hexp(—3 Nh)

SN ) ==
2
C:Nh*  Cyh*exp(h)  Csh
{CXP(”) —1 " [exp(h)— 11> " exp(h)— 1} exp(— Nh)
_3 !
Ry 2Nh)+0[Nhexp(—:zz\zh)]. (2.26)

exp(3 h)— 1

The constants C,, C,, C,, and C, which appear in (2.26) are given in (3.2)-(3.5)
below. The integration rules (2.17) and (2.18) are applied by first choosing 4 small
enough to make the interpolation error bound (2.20) sufficiently small. With 4
fixed, the truncation errors ¢%) (N0, h) and &¥_(N®, h) can be evaluated by
choosing N> and N® large enough so that the upper and lower bounds in
(2.21)-(2.23) agree to the number of digits to which these truncation errors must
be evaluated. The truncation error ¢, (N‘?, h) can be evaluated by choosing N2
large enough to make the error term in the asymptotic formula (2.26) small.
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Alternatively, we can choose N}’ and N large enough to make the truncation
errors so small that they need not be evaluated. We could, for example, make the
interpolation error and truncation error bounds comparable by choosing N") =
NP=ND=1NP=N=2rn% 2 (the factor of § in front of N'? arises because the
leading term in (2.26) fails off like exp(— 4 Nk), while the other truncation errors
fall off like exp(— Nh)). This leads to an error which decreases like exp(—n \/27\/),
which is much faster than the N~ * power law decrease of the error for more
familiar numerical integration rules based on polynomial interpolation on the real
axis. The number of function evaluations needed is then 2N + 1 for the evaluation
of f,, and 3N + 1 for the evaluation of §,.

The numerical results in Table I exhibit this rapid exp(—= \/2—]V ) convergence for
the evaluation of the hydrogen ground state Bethe logarithm. 88,, 68,, and 68 are
the differences between §,, 8,, and f and their exact values, for which we have used
our best values, which are

fy=—0.64608 11931 49311 80288 26059 89438, (2.27)
f.= 522804 39435 60416 40556 76959 2655, (2.28)
B= 229098 13752 05552 30134 25449 6855. (2.29)

These values are believed to be accurate to the number of digits shown. The
quantities p, p,, and p, which can be seen to vary slowly with N, are the errors
of,,8p,, and 88 divided by the factor exp(—mn \/)é—x’) which gives the dominant
behavior of these errors.

TABLE 1

The Dependence of the Numerical Integration Errors on ¥

N bﬂl £1 (Sﬁz P2 56 p

1 —1L1x10"! —90 44x1072 38 —31x1072 —-26
4 —12x1073 —8.4 —42x10°* ~3.0 -79x107* —57

9 —86x107¢ -53 —1.1x1073 —6.5 ~9.6x 1078 —59
16 —Lix10"7 -58 ° —17x1077 —87 —14%x1077 -73
25 —13x10°° -58 —23x107° —102 —1.8x%107° —80
36 —-1L1x10"! —4.1 —30x107" -11.2 —20x 101 -17
49 —14x10°"? —44 —37x10° 1 —11.9 —25x 10" _81
64 —1.8x10715 —49 —45%x10°% —122 —31x10°" —86
8t —1.5x 1077 -36 —53x10°"7 —12.3 —34x10°17 -79
100 —-17x107% —34 —62x1071* —122 —40x10°" -78
121 —26x10-2 —4.4 —72x107% —120 —49% 102 —8.2
144 —24x107% -34 —83x10°% —11.8 —53x10-2 -6
169 -21x107% 2.6 —95x107% —11.5 —58x10°% -70
196 —3.6x10°% —3.7 —~1.1x10"2 —11.2 —73x10"7 -75
225 —41x10°% —36 —13x10"2% —11.2 —~84x10°% -74

§95:226:1-7
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The hydrogen ground state Bethe logarithm was chosen for the initial test of the
method because closed form expressions for f; and f, can be obtained. For
hydrogen, with

1 1

H= _EV - (2.30)
1
E,= -3 (2.31)
and
Yo(r)=n""2exp(—r), (2.32)
it can be shown that
ol PP IO =1, (2.33)
ol p-(H—Eg) p o) =2, (2.34)
and
w
Yol P"H—_WPWIO
_ 192v3(1 —v) . '(l—v)z
———————__(2—\;)(1+v)7 . F, (4,2~v,3—v,————(1+v)2>, (2.35)
where
v=(14+2W)""2 (2.36)

In (235), ,F, is the hypergeometric function in standard notation [14, p. 56;
15, p. 37]. The derivation of (2.33) and (2.34) is straightforward; (2.35) can be
obtained from the formula for the Laplace transform of the Coulomb Green’s
function given by Huxtable and Hill [16], or from equivalent formulas of other
authors [17]. Replacing the nuclear charge Z by one in Eq. (1.6) and (2.1)-(2.3) of
Huxtable and Hill yields

L, A E)= j d3c d3 exp(—Ar— i'r' )(re')Y ' Y, 00, )

X Gt E) Y, (8, ¢') (2.37)
e 22U+ DY 4 242
[I(A’E’E)_—_l—v+l[2] ,:(vl+1)(vl’+1)]
X F 22U+ 2, 1—v+ L 1—v4+2,1-), (2.38)
y=(—2E)""2 (2.39)
2v(A+ 1)

T A+ DA+ 1) (240)
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Here G(r, t’; E) is the coordinate space representative (r| (E—~ H) ' |[r'). Equation
(2.35) is obtained by using (2.37)-(2.40) with /=1 and E=E,— W= —-—-W.

The numerical evaluation of f5(W) for large W must be handled with care to
avoid the excessive roundoff error which arises when floating point arithmetic is
used to combine terms which are almost equal in magnitude and opposite in sign.
For hydrogen, these terms can be combined analytically if the expansion

2Fi(4,2—v;3—v;2)
(2—v)

3
+ \'(Z—Vé(l +v)

5, 2=n+y)

-2
; (1—2z)

= (1-z)
2
(l—z)"+v(2‘—v)(1 —v?)
6
v—2 - (2 _ V)n
X {z log(1~z)+ 3, 7 [Prn+2~v)—¥(n+1)]1 —z)"}, (2.41)
n=0 °
which can be found in the Bateman project [14, p. 110, Egs. (14) and (15)] and
in Magnus, Oberhettinger, and Soni [15, p. 44], is used to evaluate the hyper-
geometric function in (2.35) for values of W greater than 2, for which the argument
(1 —v)*(1+v)? is greater than 1. The expansion of ,F,(4, 2—v;3 —v; z) in powers
of z about z=0 is used when W< 2. It should be noted that there is a sign error
in the last term of Eq. (15) on page 110 of {14].

Almost all of the computer time spent on the numerical integration of f; (W) and
f>(W) to obtain the values of 8, and f3, is used for function evaluation. Because the
amount of computer time needed for one function evaluation depends on W, the
numerical integration should be done in a way which minimizes the number of
nodes which occur for values of W for which the function evaluation is expensive.
Table IT lists the nodes for the evaluation of 8, with N =16. As can be seen from

TABLE 11
Nodes for Integrating from 0 to 1 to Obtain f,

K Node K Node K Node
—16 0.0000000191 -5  0.0038585274 6  0.9987260070
—15 0.0000000581 —4 00116252446 7 09995800879
—14 0.0000001765 -3 0.0344841672 8 0.9998616750
-13 0.0000005359 -2 0.0978414942 9 0.9999544424

-12 00000016272 —1 02477365458 10 09999849964
—11 0.0000049410 0 0.5000000000 11 0.9999950590
-10 0.0000150036 1 0.7522634542 12 0.9999983728
-9 0.0000455576 2 09021585058 13 0.9999994641
-8 0.0001383250 3 09655158328 14 0.9999998235
-7 0.0004199121 4 0.9883747554 15 0.9999999419
-6 0.0012739930 5 09961414726 16 0.9999999809
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the table, these nodes tend to cluster near the endpoints of the integration interval,
this happens because the endpoints are a step-function singularity. A similar
clustering near the endpoints occurs for f§,. The most expensive function evaluations
are those for which W is large enough to introduce a second length scale, proportional
to W~ "2 but not large enough for a few terms of the large W asymptotic expan-
sion to give sufficient accuracy (this second length scale is discussed in Section 5,
following). Fortunately the endpoints W = 0, W = 1, and W= o0 at which the
nodes cluster are not in this region where function evaluation is expensive.

3. ASYMPTOTIC BEHAVIOR OF THE MATRIX ELEMENTS OF THE RESOLVENT

In this section we will derive the first few terms in the large W asymptotic
expansion of f5(W). The result is

FHW)=C, W24+ C,W - In(W)+C, W2
+C,W 2+ Oo[W 2 In(W)], (3.1)

where the coeflicients are given by

Ci=4n/2 Y Y Zi .l o(r;—Re) ¥, >, (32)

J=1 k=1
L '¢

(t,—Ry)- (r; — Ry
R R

u‘MZ -

Z Zka'(l _5_1‘.1"5k.k ) <l// l

Il
vu' ™M=

=

1

+
I =
™M o

o] d3
Z;H LWl 35— Re=1) 19, > — (1= 2Z,r) O(1 =)

=1 k

X (Y, 0, =R W, T+4n[(1+In2-2y) Z, — 1]

n—1
<30, — RO WD = 51Ul P WL (B, = (3.4
m=0
N K 2
C=:m\2Y 3 Z {[E,.+(1—%)Zi]<wn15(r,—Rk)|wn>
j=1 k=1

Z, 1
= 800, Ro) (VD T 502 )

(s k. k)

L [2p5L L), :
_T[Ml] ) 0)}- (33)
s r=0

or? 4n =
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The &(1 —r) in (3.4) is a Heaviside unit step function with the values one for r < 1
and zero for r> 1. The factor containing the Heaviside function tames the r—*
singularity enough to make the result finite. The function p!/;% (" . (r,r') which
appears in C, is defined in (3.29) and (3.30) below. The fact that the leading term
in (3.1) is of order W ~*? can be understood by observing that a naive expansion
in powers of W~! produces a leading term of order W =2 whose coefficient is an
integral which diverges like | r ~2 dr at small r. A more careful treatment introduces
a cutoff of order W~"? and obtains W2 [ _,,r 2dr=W 2 The W ?In(W)
term can be understood in the same way. The formulas (3.2)-(3.4) for C,, C,,
and C, agree with Schwartz ([9] and Appendix A). Verifying the agreement for
C, requires the integration by parts formula {.In(r) p/(r) dr = §,(0)+ 5{(0)—
for 2[pAry — p:0) — rp(0)] dr — [ r ?5,(r)dr and the cusp condition
pi(0)= —2Zp,(0). The expression (3.5) for C,, which is new, agrees with Schwartz
for hydrogen.

The derivation begins by rewriting f,(W) in a convenient form. The next step
expands (H—E,+ W) '=(T+V—E,+ W) ' in powers of (T—E,+ W) "?x
V(T —E,+ W)~ V2 The last step of the calculation exploits the fact that the coor-
dinate space representative of (T — E, + W)™ ! is sharply peaked when W is large.

The convenient form for f,(W) is

HW)y=fr(W)—Ww~! i <Y P, (E,—E)(E,—E,+W)"', (36)
m=0
where
-1 CEy— Y g
S(W)y=W"'(y,| P(H-E,) (H—E,,+W)(H E)P Y, (3.7)

The large W expansion of the second term in (3.6) is obtained immediately by
expanding (E,,— E,+ W)~ ! in a series in powers of (E,— E,,)/W. The large W
expansion of f3(W) is more difficult. By computing the commutator of (H—E,)
with P from the definitions (2.3)-(2.6) and using (H—E,} [{,,> =0, Eq. (3.7) can
be brought to the form

f3(W):W71 Z <Wn,ml(T—En+W)”2

m= —1

X(H_En+ W)71 (T_En+ W)”z l'{In,m>1 (38)
where
. oo X rim—Rim
¥, S>=(T—E,+ W) 2y ¥ z, (———) W (39)
i=1 k=1 |rj_Rk|

(T — E, + W)*'? in (3.8) and (3.9) is the unique positive square root of
(T—E,+ W)*'. The r; ,~ R, ,, in (3.9) are the spherical components [ 18, p. 69]
ofr,—R,.
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The series expansion in powers of (T—E,+ W) V2 WT—E, + W) s
¥ (T—E,+ WY (H=-E,+ W) ' (T-E, + W) ¥, .>

J
=Y (=1<K¥, | UT-E,+W)™'?

J=0

x V(T—E,+ W) 21 |¥, >+ R,(J), (3.10)

where R, (J) is the remainder. It is shown in Appendix C that (T—E,+ W) *x
V(T — E,+ W)~ "2 is an operator from L*[ R*"] to L?’[ R**] whose 2-norm has the
bound

T—E,+ W) " V(T—E,+ W) "?|,<B(W-E,) ', (3.11)
where

—1 K
B=N[1—V——+—l— Y Zk}. (3.12)
4 2 42

The bound (3.11) implies that the series (3.10) converges for (W — E,)">> B and

that the remainder R, (/) has the bounds

BLY, | (T-E,+ W) P V(T-E,+ W) "2V |¥,.>
(W-E)"-B

o P P> B

S(W-E)[(W-E,)"~BY

IRy (N <

(3.13)

Thus the series (3.10) is an expansion in powers of (W —E,)”"? with bounded
coefficients which depend on W.

We now turn to the evaluation of the first few terms of the series (3.10) for large
W. The coordinate space representative of (T—E, + W)~ ' is

bty AN (T—E, + W) ), 1), 0y EYD
=2(2m) N2 (yR)( TN Kan - 2)/2(V‘1R), (3.14)

where K,(z) is a modified Bessel function of the third kind in standard notation
[15,p.66; 19,p.5], v=[2(W—E,)] "% and

R=/(r;— )2+ (=)’ + -~ +(ry—1y)% (3.15)

The large z asymptotic approximation K,(z)=[n/(2z)]"?exp(—z)[1+0(z")]
shows that (3.14) peaks sharply about R =0. A standard method for the asymptotic
evaluation of an integral with a sharply peaked integrand like this uses repeated
integration by parts, integrating the sharply peaked function and differentiating
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everything else. This is equivalent to formally expanding (T — E, + W) ! in powers
of T/(W — E,); it works if the “everything else” which is differentiated is nonsingular
with non-singular derivatives. Unfortunately the “everything else” in our case has
singular factors like the (r;,,— R, .} Ir,—R,|~* which appear in the expression
(3.9) for | ¥, ,.>. Furthermore, derivatives of the wave function (r;,ry, ..., Ty | ¥,>
have singularities (cusps) at the points where the Coulomb potentials in the
Hamiltonian are singular. Thus the standard integration by parts method described
above must be modified to include the singular factors in the part which is
integrated. For a term which contains the factor (r;,,— Ry ) Ir;—R,| 7’ this
modification can be carried out by introducing the spherical coordinates [r;,—R, |,
0, #;x of r, about the point R,, and expanding the r;-dependence of
{ry, 1y, ., Yx | ¥, > in a partial wave expansion about this point. The /th partial
wave in such an expansion behaves like [r;—R,|’ for [r,—R,| small (a general
theorem which includes this behavior as a special case has been recently announced
in [207]). Hence only a few partial waves will be sufficiently singular to require
special treatment. We define the projection operator P{%.X) by specilying its action

on an arbitrary vector |y ):
<l'1, r2v REEE] rN' P;,};nk] [X)

= YI.m(Bj‘ka ¢j.k) [J Yl.m( JI'.k, ¢1,k)

G ST PO FETS M ST erX>dQ;"j] . (3.16)
Irj= Rl =lrj~ R
The projection operator P * is then defined by
[ .
PR = Y pyk), (3.17)
m=—{

This projection operator is used to define the vector

AR S =(T—E,+ W) Y2 (r; =Ry ) I, =R [ TP PR 5. (3.18)

Iim.n

It follows that

Z <an.mlwn,m>:z

m= -1 7

o o 1
XY L L D, (3.19)
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If QYo T — E, |yl K)% exists, the identity (T — E, + W) ' = w—! —

Limn I':m, n

W-NT—E,+ W)V (T—E,T—E,+ W)~ "? can be used to show that

PR Z A B AR
(l'j -R,)- (Tj' - Ry)

=W (g, | PUR
el B e TR, Ry

PR 1,y +0(W ). (3.20)

Values of / and /' for which (3.20) is valid can be determined by noting that the /th
partial wave in the partial wave expansion of the r;-dependence of {ry,r,, ., vy | ¥, >
about the point R, behaves like |r;— R, |’ for Ir;—R,| small. The operator pf can
at worst introduce two additional negative powers of |[r,— R, |. Counting powers of
Ir;— Rl and |r; —R,| then shows that (Y{2X | T—E, |y ) exists and that
(3.20) 1s valid for /> 2 and !’ > 2. Establishing (3.20) for the other values of / and
!" for which it holds requires the more sophisticated analysis of Appendix C. Similar
power counting shows that (y{/,) | T— 3 pl —E, [y {,5)> exists for all / and /'

when j=/', and that (YW | T—4p>—5pl—E, [Yi,x)> exists for all / and {'

Lim.on I'm.n

when j#j". A modified version of the analysis which led to (3.20) then yields
U VWA = Pl PO T = Ri) =Ry 2
x (4P} = E,+ W)™ (5 = Re.)
x|r1~R,(,\’3P§!""" W, >+ O(W 2, (3.21)
Ui LU0 = (Pl PP (1 = Ri) 11— Ryl
X(zp;+5P7—Ea+ W) ' {1y = Ric. )
x|t =Ry | PP Y, + O(W2). (3.22)

The next step is the evaluation of the first term on the right-hand side of (3.21)
and (3.22). The case j=j', k =k’ will be worked out first. We use the partial wave
expansion

i Gpi—E,+ W) M

_ exp(—v ' |r,—r)])

20, 1)
l o I
=; Z Z Y, (0, s 8 1) Yl.m(e_},k:¢_},k)g1("ulr,v*1r'), (3.23)
=0 m=—/

where the radial coordinates are r=|r,—R,| and ' = |r; — R,]|. The function g, is
defined by the integral representation

= rdt Jy0ltzy) Jiy0(12,)
e 142 (2 (12

g,(zl,zz)=f (3.24)
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where J, ., is a Bessel function of the first kind in standard notation [15, pp. 65
and 72; 19, p. 4]. Contour integration can be used to show that

Liyp(zo) Ky y 1/2(7-'>)

g1(21’22)=2 \/;: \/z_> >

where I, ;> and K|, ,,, are modified Bessel functions of the first and third kinds in
standard notation, and z_ is the smaller and z. is the larger of the coordinates

(3.25)

- bl
L1y &2

The angular integrations over 6§, ,, ¢, 4, 6, ,, and ¢; , are performed by inserting
Fim™ R m=(41/3)"2 1, =Ry | Y (8,4, 6, 1) (3.26)

for the spherical components and using the formula for the integral of a product of
three spherical harmonics [18, p. 63, Eq. (4.6.3); Appendix C, Eq. (C.7)]. The sum
over m is performed with the aid of the orthogonality relation for the Wigner 3-j
symbol [18, p. 47, Eq. (3.7.8)]. The result is

1
Y YT D

m= —1
{ (7 k) (j. k)
IM ot U+ )M
= i L5, + Ov? 327
py T A OB (327)
where
M=y [T [Ty gty
0 0
Xpﬁji,;‘pk«gl,m;Ipr-f»l,m;n(r’ r,) (328)
with
py r’)=r"’(r’)*’l_[d3'r1 vy, nd’t,  dr, ., dPry
Xf{j;,f)"(l‘l, LS IR rjA 1 rj+l’ seey rN; r)
AT | JO0 SYONIS FENVS FIRFTIS SO (3.29)
where

;,j;nk,)n(rl’r29 seey rj—hrj+17 v Tys 'rj_Rkl)

=J ko,j Yl,m(gj,k’ ¢j,k) [ TT PR SR | F5S SIS Se W, (3.30)
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For v small, most of the contribution to the integral (3.28) comes from the
neighborhood of a sharp peak at r=r. We exploit this observation via an
integration by parts which differentiates p{>5*), ., , ., .. (r,#') and integrates
everything else, with the indefinite integrals chosen to vanish at zero and infinity.
The integrated part is then the contribution which would be obtained by treating
pie 0 (r,r') as a constant in the neighborhood of r=r. We begin with the
definitions

i=p 2'"(1— )!

Ile)== X G, m),z"'"“”*“ZJ,_m_l,z(z), (3.31)

‘& (=2)"(-p)! I—m—2p+172
Il,p(z)—mgo —p—m) ° 1 1p2(2), (3.32)

& 27U -p)
K, (z)= — et e m 2o 12, (2), 333
I,p( ) o (I—p—m)! ! 172( ) ( )
© dt

G/,,,(Zn,zz):_[_ mt4p72[72[']1.p(tz<)—_‘]I,p(o)]J/,p(tz>)‘ (3.34)

In (3.31)-(3.34), p is restricted to p=0 and p =1, with the additional restriction
[=1 when p=1.

We have defined the functions g,(z(, z,) and G, ,(z,, z;)} via (3.24) and (3.34)
because integral representations are a convenient starting point for establishing the
continuity needed for integration by parts and for deriving series expansions. This
is particularly important in the more difficult j# ;" and/or k # k' cases analyzed in
Appendix C, where the needed functions do not always have representations like
(3.25) and (3.39) in terms of known, well studied functions. It is straightforward to
show that

';—ZJ/_,,(Z)=2"2”+”211+1/2(Z), (3.35)
d 1-2p+172
Ell,p(z)=z 11+1/2(Z), (3.36)
d I—2p+1/2
E Kl,p(z) =z K, 1/2(2), (3.37)
62
22 02, Glp(thZ) (212, )172’”181(21,22), 21 ¥z, (3.38)
102,

G, ,(zy, z,) is the indefinite integral which is needed for integration by parts on the
radial integrals. Contour integration can be used to show that

G plz1,2) =21, ,(z) =1, ,(0)] K, ,(z.). (3.39)
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It is obvious from (3.39) that G, ,»0asz_ = 0 or z, — o0. The function G, ,(z,, z,)

is symmetric under interchange of z, and z, and continuous at z, = z,, but its first
partial derivatives are discontinuous at z, = z,. The discontinuity, which is defined by

. 0 7,

is easily calculated from (3.36) via contour integration. It can be written in either
of the two forms

Do,(2)= (1) 1l,,(0) [z’- Wiy L)

>'s] 21~2n+!/2
_ 2n—2p . 1
n=,§,+l M Tn—i+1/2)° ] (3:41)

=21, ,(0) [ —ZIm#TIRK, 12(2)

, l—p 21— 2n—1/2 5
—~1 —_— 7| 342

TR Y et i) ] (342)
The first form (3.41) shows that D, ,(z) is O(z¥ =%+ 1)+ O(z¥~**2) for z — 0. The
second form (3.42) shows that D, ,(z) is O(z% ~*) for z - oo. For later use, we note
that the second form (3.42) can be written as

D, (2)= 8, (2) + P)(2*) + Pi¥)(z) exp(—z), (3.43)

P
where P{®)(z%) is a polynomial of degree /~2p in z?, Pi")(z) is a polynomial of
degree /—2p in z, and
S;0(z)=0, (3.44)

g _ 21— 1) d[1—exp(-z)
"‘(Z)_F(I/Z)F(—l+1/2)dz[ z ]

(3.45)

The result of integrating (3.28) by parts, once with respect to r and once with
respect to r’, is

kY _— (J.kia) (), ki 6) :
vamzn:p_Ml,rn:n;p+M1,m;n:p’ (3-46)
where
o
(jokia)y __ ,2i—4p+2 —1 {J, k. k)
MI,m;n;p—v J;) erLP(v r)pl—2p+l‘m;l—2p+1,m;n(r’r)’ (347)

o0 o0
(Jok;b)y __ 21—4p+3 ’ —1 — 1,
MY ,=v f dr'[ arG, ,(v'r,v'r")
0 ()
2

X or or

pirh Kl (r,r). (3.48)

—2p+ 1, mii~2p+1,m;n
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By adding and subtracting
Pt 00 1[0V din) | 89)
using the cusp condition
[g DY i, r‘)LO = k0 ), (3.50)
and integrating by parts, it can be shown that

o
-2 - ke K )
Vzl .[ drS{’l(v lr)p;/f],m);/—-I.m:n(”r)

(4]

T - |
—_1"(1/2)1“(—l+1/2)v ({1—\+2Zk1 v[ln(v)+1—/]}p(0,0)

+v{r~ p(r,zr) dr+jl p(r,r)—[1-21"'Z,r] P(O,O)dr}
. r 0

r2

o 2]
_"J 2] 'Z,p(0,0) + dp(r, r)/@rex

0 r

p(—v"r)dr>, I>1. (3.51)

The abbreviated notation p(r, ') =pi*4*) | ., 5., 1 ma(r, ") has been used when
writing (3.51). y is Euler's constant: y = [y ¢ '[1 —exp(—#)]dr — |7 7' x
exp(—¢) dr=0.5772156649.... The rapid decay of the exponential factor exp(—v~'r)
in the last term in (3.51) justifies making the small v approximation of replacing
20 7'Z, p(0, 0) + 3p(r, r)/or by r[&%p(r, ¥)/Or*],_, in this term; the integration over
r can then be performed. It can also be shown that, in the same abbreviated nota-
tion,

v21+2—4pj B p(r, r) P}“’;(v’zﬁ)dr

0

=27 J | p(r, r)r?' =% dr + O(v%), [—-2p>=0, (3.52)
0

vz“z"‘”_[ p(r, r) PP (v 'ryexp(—v~'r) dr
0

=(48,,0, 1 —28,00,0) vV’ p" k1, ,(0,0)+ O(*). (3.53)

The asymptotic evaluation of M[/,*%) in (3.48) for v small can be handled by
methods similar to those outlined above. Again the integrand peaks sharply at
r=r". The leading term for {— 2p > 0 can be obtained by evaluating 8°p(r, r')/dr or'

at r'=r and integrating over r’; this leading term is found to be O(v*). The only
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case for which this estimate fails is /=1, p= 1. In this latter case, the leading term
can be obtained by evaluating é%p(r, r')/0r 0r' at r=r'=0 and integrating over r
and r’ with the aid of the integration formula

o i x -y ?
J~ o sinh(x) j dy exp(—y) _ T (3.54)
, B g

The result, after using the cusp condition (3.50) twice (once for r and once for r'),
is

MPED = L (n2—8) Z1v pi &t (0, 0) + O(v*). (3.55)

The integration formula (3.54) can be established by making the change of variables
x =rcos(8), y =r[cos(8) + sin(#)]. The integration over r (from 0 to oo ) is performed
first; the remaining integral over € (from 0 to #/2) can then be evaluated by using
the change of variables 7=[1+tan(#)]"' to obtain integrals which can be
evaluated in terms of the dilogarithm function [21, pp. 244, 266].

Putting all of the pieces together and adding in the first correction to the
approximation (3.21) yields

1 1
XX Y DD
1=0

m=—1

=2{v+2Z,v’In(v) + [2Z,(1 —y)— 1] v?}

X P (0, 0) +2v [ Z j piak) alrr)dr

m=—1

+J" P(()jokokl) LA r)—(1 “221( )ngokokt) "(O’O)dr
0

62 (j, k, k) 1 .
r2[ L] 6 3 put, 0.0
r r=90 m= —1
+8n (Y, | 8(r; =R )T -3 p}) |l/f,.>} +O[v* In(v)]. (3.56)

This contribution can be written in the form in which it appears in the result
(3.1)(3.5) by using

o€ i
L X Aphdnn = [ Gl Re D ) d,s (35)
(=0 m=

pé){vﬂj?Olfz);n(O’ O) = 4” <¢n( 5(['/-— Rk) h[/n> (358)
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The cases j#j’ and/or k # k' are treated via similar methods in Appendix C; the
conclusion is that (3.20) is valid in these cases for all /[ and /’. The j=1 and j=2
terms in the expansion (3.10) can aiso be analyzed via these methods; the results
are

Y ¥unl (T=E+ W) 2 VT-E,+W) 2 |¥, 5

Yy Zi{[(l—zlnz)zkvai] Wl 50— Ry) 100
J=1 k=1

+v<¢n|a(r,-—Rk)(V ~§—)wf >}+0[v4m(vn, (3.59)
TRy

i (Fpml UT—E,+ W) "2 V(T—E, + W) 21|V, >

m=—1

=87rv3<1 ———) i i Zi (Yl 8(r,—Ry) [y, >+ O[v* In(v)]. (3.60)

A few of the details of the derivation of (3.59) and (3.60) are sketched in
Appendix C. The coefficients C,, C,, C;, and C, can now be assembled. Additional
terms in the large W expansion {3.1) should be obtainable via the methods outlined
here, but we have not tried to derive them.

4. A VARIATIONAL PRINCIPLE FOR THE MATRIX ELEMENTS OF THE RESOLVENT

For most problems, needed values of the matrix element {¢| ({—A4) '|¢) of
the resolvent will not be calculable in closed form in terms of known, well-studied
functions, and approximate methods must be used. An appropriate tool is the
Schwinger-Levine variational principle, which will be discussed here only for the
special case in which A is a non-negative Hermitian operator, { = — W with W real
and positive, and | ) =y > =|¥ ). This special case is all that is needed for the
computation of Bethe logarithms; more general versions of the principle can be
found in Stakgold [22, pp. 311, 340, 357]. In this special case the Schwinger—
Levine principle is a maximum principle which takes the form

A =max 1, (4.1)
1>
where
=\ (2
r__ K¥IDI 42)

A A+W) >
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The maximum, which is

1
l=<¥’lA+Wl‘1’>, (4.3)
is achieved for |7 > = |y, where
. "4 4.4
0= 1 (44)

with ¢ an arbitrary constant. For the Bethe logarithm problem, [¥ ) will be either
P, |¢,> (where P,, is the mth spherical component [18, p. 69] of P) or AP, |y, >
and 4 will be QU (H—E,) Q.

The use of (4.1)-(4.2) for approximate calculation is similar to the use of the

familiar Rayleigh-Ritz variational principle. One chooses a basis set {|£,>}~_, and

looks for an approximation |7) to x> of the form

Z>=2 Mg, (4.5)
n=0

where the ¢! are variational parameters, dependent on N as well as n, which are
chosen to maximize the quotient 1 defined by (4.2) in the subspace spanned by the
finite basis set {|£,>}~_,. Let Py be the projector onto this subspace. The best
approximation with this basis can be written in the form

17> =C[Py(A+ W) P17 ¥, (4.6)
A= ¥ [Py(A+ W) Py ¥, (4.7)

where [Py(A+ W)P,] ! is the generalized inverse (inverse on the subspace
spanned by the {|&,>}~_,) which satisfies

[Pn(4+W)Py]~ [Py(d+ W) Py]
=[Prn(A+ W) PyI[Py(A+ W) Py] =Py, (4.8)
and
[Pyv(A+W)Py] ' Py=Py[Py(A+ W) Py]™"
=[Py(A+W)Py] " (4.9)

Here ¢ is a constant which can be chosen arbitrarily.
Formulas which are convenient for computation in the general case of a basis
which may not be orthogonal can be obtained by introducing a second basis set
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{In{™>}~_, which spans the same (N + 1)-dimensional space as the |&,>. The
[7¥>, which are determined uniquely by the orthogonality conditions

I =0, 0, (4.10)

are given explicitly by
N .
> =3 g 18,0, (4.11)
n=0

where the matrix g'¥) is the inverse of the Gram matrix (¢, | &,,>. The superscript
(N) is used to emphasize the fact that the |#!"> and the elements of the matrix
g!M) will depend on N even if the |¢,) do not. The [7{¥’) can be used to write the

projector P, in the forms

N N
Py= 3 1€V =3 V)<, (4.12)
n=0 n=0
The representations (4.12) of P, can be used to show that
N N
[Pr(A+W)PyY "= 3 3 BUD 1Ea0<Ea), (4.13)
m=0 n=0

where the matrix B'Y) is the inverse of the matrix {&,,| (4 + W) |£,>. A formula

m,n

for practical calculation can now be obtained by inserting (4.13) in (4.7) to obtain

N N
I= Y Y BMCPIEDCE ). (4.14)

m=0 n=0

Equation (4.14) shows that the use of a basis set {|¢,)>}~_, which is not ortho-
normal does not increase the computational effort; the auxiliary basis vectors
|7t¥ need never be calculated.

The variational method outlined above will be effective if the convergence rate is
sufficiently fast; this will happen if the basis set {|£,>}Y_, is chosen appropriately.
Rates of convergence for variational methods are determined by the way the basis
set handles the singularities of the function being approximated [23]. Thus an
understanding of the singularities of |z)> is needed if a good basis set is to
be designed. Some of these singularities come from the driving term ¥; others
come from the operator A. In addition, large values of W will introduce a second
length scale, proportional to W ~!'2, which must be handied properly by the basis
set.

A first step in the discussion of convergence rates for the Schwinger-Levine varia-
tional principle is the derivation of an error formula. The choice ¢ =¢=1 for the
arbitrary constants in (4.4) and (4.6) implies that A= (¥ | > and i1=<(¥|}).
Because |7 ) is in the range of the projector P, {j| = {j| Py. Using these together
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with (P[={yl (4+ W), |¥>=(4+ W)y, and Py|¥)=Py(A+W)Pyli>
yields
R EXCAVIREC AN IRXCAR SERCIN L

=l = <INA+ W)X = 12D). (4.15)
Equation (4.15) shows that the appropriate notion of convergence for the
Schwinger-Levine principle applied to the Bethe logarithm problem is convergence
in the first Sobolev space, restricted to vectors |x> for which (¥, | x> =0,

0<m<n—-1. The error formula (4.15) can be brought to a form convenient for
computation by introducing the Cholesky decomposition

min(m, n)

CnlA+W)ED>= Y UpnUls (4.16)

1=0

where U, , is an upper triangular matrix (ie, U,,=0 for />n). U,, can be
systematically calculated from the formulas

n—1 1/2
Un.n=[<fnl A+ W)IED— Y Uf_,,] , (4.17)
1=0

Umn:[<ém'(A+W),§n>—mz Ul.mUI,n]/Um.m’ m<n. (418)
=0

Introduce new basis functions |{,,> which are related to the [£,) via

n n

18> =2 UiallDs  10>=2 (U1, (4.19)

{=0 (=0

It is easy to show that the matrix (U™'),, , inverse to U, , is also an upper
triangular matrix. The elements (U '), ,, and therefore also the |{,>, do not
depend on the dimension of the space in which the inverse is computed. The new
basis functions |{,> obey the orthonormality relation

Cal (A+ W)L =0, 0 (4.20)

The expansions of the exact and approximate solutions |y > and |7 ) in this basis
are

o N
o= cullnd, 1= el (4.21)
n=0

n=0

where the coefficients ¢, which do not depend on N, are given by

=L, ). (4.22)

595 226 1-8



112 FORREY AND HILL

It follows from (4.15), (4.20), and (4.21) that
A—Z= Y el (4.23)
n=N+1

It is straightforward to show that the coefficients ¢;, are related to the coefficients
¢, in the expansion

oo

x>=23 cal&ud (4.24)

n=0

of |x> in the original |£,) basis by
C;,= Z Un,]C’. (4.25)
l=n

Equations (4.23) and (4.25) can be used to compute a large N asymptotic expan-
sion of the error A — A from asymptotic expansions of U, , and ¢, which are valid
for n and / large. The next section contains such a calculation.

5. A BASIS SET FOR VARIATIONAL APPROXIMATIONS TO THE RESOLVENT

Rapid convergence of variational approximations to the resolvent for hydrogen
and helium for small to moderate values of W can be obtained with a Laguerre
polynomial basis set. For helium, one uses Laguerre polynomials in perimetric
coordinates (perimetric coordinates for helium were first introduced by James and
Coolidge [24] and were used extensively by Pekeris [25]). Such a basis set is often
called a Sturmian basis set in the physics and chemistry literature. It has the advan-
tage that it builds in all of the two particle cusps, which are the most important
singularities for atomic and molecular systems. It also has good numerical stability
properties. For large values of W, this basis set must be supplemented with
auxiliary basis functions which are designed to handle the second (short) length
scale which is proportional to W2 This section begins by showing how to
analyze the convergence rate for a Laguerre polynomial expansion of an arbitrary
function. This analysis is then used to derive auxiliary basis functions which can be
used to accelerate the convergence of such expansions. The Bethe logarithm for the
hydrogen ground state is used as a concrete example; the convergence rate for the
variational principle for this example is obtained from the error formula (4.23)
Numerical comparisons with exact results are given.

We begin with the Laguerre polynomial expansion of an arbitrary function f(x).
Make the definition

usia',:x)(x) — [n,/[v(n +a+ 1)]1/2 exp(_x/z) x“‘LL“)(_x), (51)
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where L*(x) is a Laguerre polynomial in standard notation [15, pp. 239-249;
19, pp. 188-192]. For a function f(x) which involves a single length scale 1/a, the
appropriate Laguerre polynomial expansion is

20

f(x)=3 2 a; x), (5.2)

n=0
where
& (a; x)=a""ul *Nax). (5.3)

The parameter «’ should be chosen to make the small-x behavior of the basis
functions the same as the small-x behavior of f(x). The functions &*"*(a; x) are
orthonormal with respect to the inner product {f|g) = [& f(x) g(x) dx if a=2o';
the flexibility afforded by the possibility of choosing « # 2«’ can be exploited to sim-
plify matrix element evaluation and/or to make the needed matrices sparse, as will
be seen below. The expansion coefficients ¢!***) in (5.2) are given by

¢l = e =2 2L o 1)] V2 1), (54)
where
1= [ swexp (=)L e (55)
0

The integrals 7'**® can be obtained by using the generating function
g n
(1—z)~* 'exp[—xz/(1-2)]= ¥ L&(x)z" (5.6)
n=0

for the Laguerre polynomials. The I'*** are found to be the coefficients in the
small-z series

g z)= Y 10z (5.7)
n=0
for the function g'*>*)(z), given by
g™ 2)=(1—2)"*" F(s), (5.8)

where

F(s)=J‘[:O x*~%f(x) exp( —sx) dx (5.9)

is the Laplace transform of x*~*f(x) and s is given by

_a(l+z)
Y=z

(5.10)
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The large-n behavior of ¢!** is determined by the large-n behavior of 7**),
which is in turn determined by the nature and location of the singularity of g'*"*)(z)
which is closest to z=0. If there are no other singularities near this closest
singularity, the detailed description of this large-» behavior can be obtained via the
method of Darboux [26, pp. 532-535; 27, pp. 116-122, 145-146; 28, pp. 309-315,
3217, which is best explained by an example. Suppose that

gz Z Alzo—2)" " +g,(2) (5.11)

for z near z,, where ¢ and the A, are constants, with ¢ not a positive integer, that
zo is the singularity of g™ *(z) closest to zero, that g,(z) is an analytic function of
z, and that z, is the singularity of g,(z) closest to zero. The binomial expansion of
(zo—2z)"*Fis

(zo_z)n'+k= Z <a+k>(_1)"28+k‘"2". (512)

n=0 n

Then the asymptotic behavior of /*"* in (5.7) is given by
: +k
1 = Z Ak<” )(—1)"zg+k"+0(|zlr"“). (5.13)

The ¢ in the error estimate O(z;”**¢) in (5.13) is an infinitesimal positive number
which is needed because the nature of the singularity of g,(z) nearest the origin has
not been specified. The Stirling approximation to the gamma function [ 14, p. 47,
Eq. (2); 15, p. 127 can be used to show that

O"f‘k o 1 Co—k—1 1
( >(_1) el [1+0(n )] (5.14)

n
for n large. Thus the £ =0 term in (5.13) is the most important. It follows that

LT
Aozg

Ila'.a):
I'(—oa)

zo"n T [1+0(n Y] (5.15)

The z," factor in (5.15) gives the well-known exponential behavior (growth if
jzo) < 1, decay if |z4] > 1) of power series coefficients which comes from the location
of the nearest singularity. The n~ 7~ ' power law factor is a correction which arises
from the nature of the singularity. If there are several nearest singularities lying on
a circle of radius |zy| and if these nearest singularities are well separated, the
asymptotic behavior of 7*>*) is given by a sum of contributions like the right-hand
side of (5.15), one for each singularity. Because the A, in (5.11) behave like
|zo—z;] % as k becomes large, where z, is the singularity closest to z,, the method
of Darboux breaks down as |zy— z,| becomes smalil
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In order to apply the method of Darboux to our problem, we must first locate
the singularities of g *(z). The factor (1—z) "' in (5.8) will introduce a
singularity at z=1 unless F(s) has a compensating factor. Equation (5.10) shows
that z= 1 corresponds to s = 0. Since F{(s) is a Laplace transform, the behavior of
F(s) for large s can be extracted by applying Watson’s lemma, which relates the
large-s behavior of F(s) to the small-x behavior of x*~*f(x). Specifically, if the
integral (5.9} converges, and if f{x) has an asymptotic expansion for x — 0 of the
form

fxy~ Z b,x"*", (5.16)
n=0

a large-s asymptotic expansion of F(s) can be obtained by inserting (5.16) in (5.9)
and integrating term by term to obtain

Fis)~ S b l(a—a' +p+n+1)s *+x-un, (5.17)

n=0

Remark. The theorem in asymptotic analysis which is known as Watson’s
lemma is usually attributed to G. N. Watson [297]. However, Wyman and Wong
[30] have pointed out that Watson’s lemma can be regarded as a special case of
an earlier theorem of Barnes [31]. See also [27, 28, 327. Equations (5.8), (5.10),
and (5.17) show that g™ *'(z) will not have a singularity at z=1 if &' = y; this is
the origin of the statement above that «' should be chosen to make the small-x
behavior of the basis functions the same as the small-x behavior of f(x) (the choices
a'=p—1, u—2, u—3, .., could also be used, but only if they did not make the
basis functions too singular or too far from orthogonality). We now look at the
singularities of g'** *(z) which correspond to singularities of #(s). Equations (5.8)
and (5.10) imply that

2s—a
= . 5.18
2s+a ( )
Thus, if F(s) has a singularity at s,, g'***(z) has a singularity at
25, —a
= . 5.19
% 25, +a ( )

Since s, does not depend on a, the location of the singularity of g'**)(z) (the value
of z,) can be changed by changing a. The most rapid convergence possible with an
expansion of the form (5.2) is achieved by eliminating the singularity at z=1 by
setting ' = 1, and by choosing a value of a which puts the nearest singularity of
g* *(z) as far from the origin as possible. Obviously a change in the value of a
which moves one singularity of g *)(z) further away may well move some other
singularity closer, so that the other singularity becomes the nearest singularity. If
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this happens, the optimum choice of a is the one which makes the two singularities
equidistant from the origin. Thus there will normally be a limit to the improvement
in the rate of convergence which can be achieved via a good choice of a; further
improvement in the convergence rate requires something else.

The “something else” is the use of additional basis functions whose expansion in
the basis functions (5.3) involves expansion coefficients with the same asymptotic
behavior as the ¢/***. Suppose that the asymptotic behavior of 7{*>* is given by
(5.15), so that ¢***, which is related to I*"* via (5.4), has the asymptotic
behavior

C(xl.“ 3 Aozga(21~21 +1)/2

o=y —(a/2)—0—1 -1
; T [1+0(nYH]. (5.20)

We want to add a function to the basis set whose expansion coeflicient behaves like
¢ for large n. Call this function h(s, z,, ', &, a; x). Then we want the coefficients
d, (o, z4, o', 2, @) in the expansion

w0

h(o, zo, &', o, a; x) =Y, d,(0, 2o, o', &, @) £ P(a; x) (5.21)

n=0

to have the same large-n behavior as ¢{***/4,, so that we can write

o0
f(x)=Aoh(o, zo, o, o, a; x) + 3, =V N a; x), (5.22)
n=0
with ¢ = V=% 4,4 (0, zo, &', o, a) decreasing faster for large n than ¢!\

The function # is found by inverting the analysis which led to the asymptotic
formula for ¢!*-*. Let

oy (1=t |22
(zo—2)° = (1 —z) H[Z(l—z)]’ (5.23)
where
H(s)= fm X*"*h(o, z,, o, o, a; x) exp( —sx) dx. (5.24)
0

The usual inversion formula for the Laplace transform yields

aa+l(zo__ l)a
[o+1)

o

h(o, zy,a', 4, a; x) =

xexp(—ax/2)1F1<—a;cx+1; X ) (5.25)

1—z,
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with | F; a confluent hypergeometric function in standard notation [14, p. 262;
15, Chap. VI]. This convergence acceleration process can be repeated, leading to
the expansion

K—1 oc
Jx)=Y Achlo+k zo, 0,0 a;x)+ Y, &= RE D (g; x), (5.26)
k=0

n=0

and the asymptotic estimate
(22— 22"+ 1)/2,6 + K
“0

MN—o—K)

a

C("a’.i.K)=AK n—(a/Z)*a—»Klle\n[l+0(n¥l)]’

K + 6 not a positive integer or zero, (5.27)

which shows that each additional function A(o +k, z,, o, &, a; x) used in (5.26)
improves the convergence rate of the infinite series in (5.26) by an additional factor
of 1/n. If ¢ is a negative integer, so that the singularity is a pole, the improvement
stops at K= —g — 1. The analysis given above for branch points of the form (5.11)
can be extended to include logarithmic branch points by taking a derivative with
respect to o to bring down a logarithm.

In order to apply this rate-of-convergence theory, it is necessary to know the
location of the singularities of F(s) and the form of the expansion about these
singularities, at least for the singularity (or singularities) which give rise to the
singularity (or singularities) of g~ *X(z} closest to the origin in the complex z plane.
In some cases this information can be obtained from known properties of x*~*f(x)
by invoking theorems on the Laplace transform. In particular, F(s) is an analytic
function of s in the interior of the domain in which its defining integral (5.9)
converges; analytic continuation can be carried out by deforming the path of
integration in (5.9). In other cases, it may be possible to Laplace transform the
equation for x*~ *f(x) to obtain an equation for F(s) from which the location and
nature of its singularities can be deduced. Alternatively, values of s, and ¢ can be
deduced by numerical fitting to empirical convergence patterns, or s, and ¢ can be
treated as additional (nonlinear) variational parameters.

We will now apply the theory to the hydrogen ground state Bethe logarithm,
where comparisons with exact results can be made. Introduce the spherical
components p,, [ 18, p. 69] of the momentum p via

1 .
Pi1= iﬁ(pxilpy); Po=p.- (5.28)

Then the spherical components of p [/, > have the coordinate space representatives

9
x| P W0 =—j§ Y, (0, ) exp(—r). (5.29)
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The exact solution |¢ > of the variational problem (4.1), (4.2) has the coordinate
space representative

=<0l (H=Eoq+ W)™ "' p, o> =iY (0, ¢) r ~'f(r), (5.30)

which implies that f(r), which is the function to be expanded in a Laguerre
polynomial basis, has the representation

Jiry=—ir [ Vi 0. ) <xl (H = Eo+ W)™ p,, 0> d2, (5.31)

where the integration is over § and ¢ with d@Q =sin(f) df dg. Since f(r) behaves like
r? for small r, we choose o’ =2 in the Laguerre polynomial expansion. Equations
(2.37), (5.9), and (5.31) then imply that the Laplace transform F(s) which appears
in the generating function g>*(z) for the expansion coefficients is given by

o

F(s):J0 r* *f(r)exp(—sr) dr

2 a\* 3 1
:-———( ) I, (s,l,—W——), o =3 (5.32)

\/5—55 2

We choose a=2a’'=4 to obtain a basis orthonormal with respect to the inner
product {f|g> =j{;"'ﬁg(r)dr. The right-hand side of (5.32) can be evaluated
with the aid of (2.38)-(2.40); the exact expansion coeflicients then follow from (5.4)
and (5.7)}-(5.9).

The singular points of F(s) occur at s= —1 and at s= —v~', as can be shown
either by using (2.38)-(2.40), (5.32), and the fact that the hypergeometric function
has singularities at one and at infinity, or by Laplace transforming the differential
equation satisfied by r’f(r) to obtain a differential equation for F(s). For an
example, see [16, Egs. (3.8)-(3.11)]. It follows from (5.19) that the singular points
of the generating function g>*)(z) are at the points

)

2+a e 2+av

2—-a O T 2—av (3.33)

(1
“0

The asymptotic approximation to ¢** can be obtained by working out the
expansion (5.11) about each of the two singularities. In order to facilitate the
discussion, we introduce the contour integrals

1
g}f”’(z)=§—. ‘j; ({—2)"'g® O &, k=1,2, (5.34)
T Yy
1
Ja o o lg@a(ry gr k=1,2, 5.35
mk T ﬂkc g ( )
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where the contour C, runs clockwise around the branch cut associated with z{,
which runs from z{" to infinity. These contour integrals are obtained by writing
ordinary Cauchy integrals for g'>*/(z) and /{** in which the contour is a small
circle around the origin which is large enough to contain z. This small circle is
then deformed to a new contour which is the sum of C, and C,, plus pieces at
infinity which do not contribute. This kind of contour deformation is used in the
derivation of the method of Darboux given on pages 116-122 of [27]. Then
g2 M(z)=g>z)+ g ¥(z). I'7* is the contribution of the singularity z§ to the
asymptotic behavior of I** in exact form. The expansion coefficient ¢*' is
given by

2P =a® 2l Mn+a+ )]V PP+ T3] (5.36)
The asymptotic expansion of I\** can be obtained by using (2.41) to work out
the non-analytic terms in the expansion of I,(s, 1, — W —3) about s= — 1. These
terms are
1 —4y? 4v*
ILiis 1, - W—=}=
'(5 2> )1 1s)P 0P (1+s)

16v®log(1 +s)
A+v) (=) (w2 (I —vs)?

+ analytic function. (5.37)

It follows that the first three terms of the large n expansion for 7> for o =4
are

e —32-a) <2—a)”(n+3)!
" \/E(l—vz)a(2+a)4 2+a n!

32 +a) 1 3(2 4+ a)?
x{”[ 2a :'(n+3)+[ 2 ]

vi(2—a)® 1 »
x[l‘lz(l—vZ)] mi2mss) o )}- (5.38)

The asymptotic expansion of 7'*;*), can be worked out by using

n22

2—v
24w

2F,(4,2—v;3—v;z)=—( )z’42F1(4,2+v;3+v;z")

+é1"(3—v) FQ+v)(—z)? (5.39)
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to obtain

g 9(z)= 4096nv*(1 + a) [(1 —v)(2+av)]v

V3 (1 =v?)sin(rv)(4 — a>v?)> LU +v)(2 —av)

1—a 13+ al,
() ] e

+ analytic function. (5.40)

It follows that the first three terms of the large n expansion for 7{>* for a =4 are

124 = e, )<2—av>"F(3+v+n)

2+ av n!

x{ (2—v)(2+av)[6+(2+a)v+av]
Bav(n+2+v)

(42 =¥ -2 +av) 8+ +av?) O(n,3)} (5.41)

12842 (n+ 1+ v)(n+2+v)
where
167v3(2 — av)?
3 @1 —v?)sin(mv) [2 + v)(2 + av)?

Bav(l —v) v

CH(y) =

The large n asymptotic expansion of ¢/>* is then obtained by inserting (5.38) and
(5.41) in (5.36). This asymptotic result is compared with the exact coefficients in
Table I11 for v=0.01 and a = 10, which implies that z{''= — 1.5 and z{?’ = 1.105...
With these choices of v and a, the contribution /{7 from z" dommates for srnall
n, and the contribution 7%* from z{’ dominates for large n, with a crossover at
n=25. The relative errors llsted in the last column of the table are the exact values
minus the asymptotic approximations 7>* + I,*) divided by the exact values. The
anomalously large relative error at n=25 arises because a partial cancellation
between I'>* and I*,* makes the exact value anomalously small.

It can be seen that the product vn, and not just n, must be large if (5.41) is to
be a good approximation. This happens because g'>*'(z) has a singularity at
z=1/z{ which approaches the singularity at z=z{"’ as v— 0. This additional
singularity is not on the top sheet of the Riemann surface for g> *)(z) and therefore
does not contribute to the asymptotic behavior of /&> when v is not small, but it
does limit the radius of convergence of the expansion (5.11), giving rise to a
123 — /2] % oc v % growth of the A, as k increases and a consequent breakdown
of the method of Darboux when v is small. We can circumvent this breakdown and
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TABLE 111

Asymptotic Approximations to Expansion Coefficients

n &9 129 &Y+ 120 Relative error

One-term asymptotic approximations

5 —3.154x10°¢ 9.168x 107 —3.145x 10" 19x10°!
10 2121 x10°¢ 1.756 x 102 2.139x10°° 1.6x 107!
15 —7970%x1077 2201x10~¢ —7.750 x 10~ 20x 1072
20 2278x10°7 2272x 1078 2.505x 107 22%x 10!
25 —5549x 1078 2.097x10~® —3451 %108 —1.1x10

30 1.217x 108 1.800% 103 3.017x10°8 45x10"!
35 —2478 x107° 1467 x 108 1.220x 1078 5.7x107!
40 4774 x 10710 1.152x 108 1.199 x 108 48x10°!
45 —8810x10° ! 8.776 x 10~° 8.687x10°° 46x10°!
50 1.571x 10~ 6.533x 10°° 6.549 x 10° 43%x 107!

Two-term asymptotic approximations

5 —3.864x10°¢ 5099 x 103 ~3813x107° 1.5x 102
10 2415%10°° 6.431x10°% 2479%10°¢ 30x 102
15 —8767x10°7 6.338 x 108 ~8.133x1077 —28x107?
20 2456 x 107 5573x 1078 3.014%x 1077 57x10°2
25 —5906x 107 4.580 x 10 ¢ ~1.325x10"% —35

30 1283 %1078 3.598 x 10~# 4881 %1078 12x10!
35 —2.595%10° 2.735x10°% 2476 %1078 13x 107!
40 4973x10°10 2.028x 108 2,078 x 10* 1.0x 107!
45 —9.141 x 10~ " 1474 x 103 1.465x 10~* 88x1072
50 1.625x 10~ 1! 1.055x 108 1.057x10~* 75%x 1072

Three-term asymptotic approximations

5 —3.985%x10°¢ 1.269x 107 ~3.859%x10°° 30x10°3
10 2444 x10~¢ 1.106 x 107 2.555x107° 7.3x10°4
15 —8.823x107 9.157 x 10~# ~7.908 x 107 1.2x10°4
20 2466 x 1077 7.287x10°% 3.195x 1077 2.7x10°*
25 —5922x10°*% 5.622x 1078 —2998x10~° —87x10°?
30 1.286x 1078 4230x10"3 5.516 x 108 29x10*
35 —2.599 x 10° 3.119x 108 2.859x 10" 29x10*
40 4979 x 10710 2261 %1078 2311 %1078 19%x 104
45 —9.149x 10~ 1616 x10°¢ 1.607 x 10~# 1.5x10°*
S0 1.626 x 10~ 1.141x 1078 1.142x 108 1.1x10°%

obtain a large n asymptotic expansion for /!>, which remains valid as v - 0, by
inserting (5.40) in the Cauchy integral formula (5.35). The “analytic function” part
of g'>*)(z) does not contribute; the remaining part can be evaluated for n large by
making the change of variables z = z{?) exp(¢) and using the expansions

__(l=a\]__ 2a(2+v) 2+av 1, \
[“ (1+a>]-(l+a)(2—av)+<2—av>|:t+2,+O(t )], (5.43)
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1 kY 2 —av 3—v ey 1
[-—F] —<2+av) (‘f+t) {1—5(3—\’)

x 13(1 + 1) '+%(3—v)(4—v)t“(r+t)‘2

—é B-—v)E+n '+ 0(13)}, (5.44)
2_av RE Y
[zaz’—z]“=(2+‘;‘v> (1)

Yo+ Ltaty 2 o
x[l—2(3+1)t+24(3+»)(8+3v)t +0(r )J, (5.45)

where
t=1—[zP] *=8av(2+av) > (5.46)

The expansion (5.44) is obtained by expanding {1 + [exp(f)—1—¢J(z+¢) '} >+
in powers of [exp(¢)—1—t](r+¢) ', and then expanding the exp(¢) in the result
in powers of 1. When the expansions (5.43)-(5.45) are multiplied, only the first three
orders are kept; all terms which are of order > or higher compared to the leading
term are discarded. The integration over ¢ is performed with the aid of the formula

1
T §exp(—m‘)(r+t)”+v(_,)fm i

,L,r/~m+1

=mU(—m—v+l,—l—m+2,nr). (5.47)
The function U(a, y, () in (5.47) is the irregular solution of the confluent hyper-
geometric equation, which can be defined by [ 14, pp. 255, 273; 15, pp. 277-278]

1 w
Ula, v, O:m—) fo exp(—Cr) = (141 %V dr

02D fexp—tip—or ey an (548)
2mi

Reference [14] uses the symbol @®(z, 7y, () for this function. The first integral
representation in (5.48) is valid only if Re a > 0; the second (contour) integral,
in which the contour is a loop in the clockwise direction around the branch cut
which runs from zero to + oo along the positive real axis, provides the analytic
continuation in a and removes this restriction, but fails for o a positive integer. The
philosophy behind the computation is that the factor exp(—nt) in the integrand



ANALYTIC FUNCTIONS OF OPERATORS 123

cuts off so quickly for large » that only small ¢ matters. The expansions
(5.43)-(5.45) provide an adequate approximation in this small 7 region. A rigorous
justification for this procedure, which embodies the same philosophy as Watson’s
lemma, can be supplied by generalizing the proof of Watson’s lemma. The resulting
uniform approximation, which remains valid as v =0, is

2 —av\"
(2.4 _ (2. 4) 24w B2 4.
In.2 C (V) (2+av> n [b() (v,n‘c)
+n B2y, ) +n 2BV (vint) + O(n?)], (5.49)
where
bEV(vint)=(nt) 2 U(~2—v, —4, nt), (5.50)
_4 _ -
b(le)(v;m):_(m)ﬂﬂ,{z a+ (a—4)av—av
2a
xU(—1—v, —3, n1)
1
#3392+ Uy, =3, n‘c)}, (5.51)

b vy nt)=(nt) " (1 +v)

Q+[12(a=1) = (6a—11) av + 3a*]
x{ 24q

x U(—v, —2, n1)

v(3 —v)[2(3 —4a) + (3a— 10) av — 3av?]
- 12a

x U(l —v, —2, nr)—%»'(3—v)(4—v)
x(24+v)(1—v) U2 —v, —2, nr)}. (5.52)

The functions b{*>*(v;nt) are bounded for 0<v<1 and 0<nr< oo, and vary
slowly with n for v, and therefore also 7, small. The large z asymptotic expansion
of U(a, ¢, z) can be used to show that (5.49) agrees with (5.41) in the limit n —» o0
with v fixed at a finite positive value. The asymptotic results obtained using (5.49)
and (5.41) are compared in Table IV for v=0.01 and a =10, which are the same
values used for Table III. The relative errors, which are again the exact values
minus the asymptotic approximations divided by the exact values, show that the
uniform approximations are significantly better except for small s.
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TABLE 1V

Ordinary and Uniform Asymptotic Approximations Compared

I&O+ Iy I8+ 1Y Relative error Relative error
n (ordinary) (uniform) (ordinary) (uniform)

One-term asymptotic approximations

5 ~3.145x 10" —3.032x10"¢ 19%x 10! 22x10°!
10 2139 x10°° 2.228x10°° 1.6x 107} 1.3%x10°1
15 —7.750 x 107 —7.088x 107 20x 1072 1.0x10°!
20 2.505 %1077 2981 %107 22x10°! 6.7x 102
25 —3451x10°* —1.094x10° —1.1x10 63x107"
30 3017x10°® 5320x 102 45x 107! 3.6x1072
35 1.220x 108 2783 x 10~% 57x10! 27x1072
40 1.199 x 10-# 2249 x 108 48x 107! 27x10°2
45 8.687 x 10°° 1.567 x 10~# 46x 107! 25%x10°2
50 6.549 x 10~° 1.116 x 108 43x 10! 23x10"2

Two-term asymptotic approximations

S —3813x10"¢ —-3736x10% 1.5x 1072 3.5%10°2
10 2479x10°° 2526 x10°° 30x 1072 12x 1072
15 —8.133x10°7 —7.851x1077 —28x1072 73x1073
20 3.014x 1077 3.185% 1077 5.7 %1072 3.3x 1073
25 —1.325x10"°® —2.836x10°° -35 46x10°2
30 4.881 x 10 -8 5514 x 108 1.2x 107! 75%x107¢
35 2476 x 10 °® 2.860 x 10# 1.3x 107! 20x1074
40 2078 x10°% 2311 %1078 10x107! 28x107*
45 1465x10 ® 1.607 x 108 88x10? 21x1074
50 1.057x 10 “# 1.142x10°% 7.5%x 1072 1.8x10°*

Three-term asymptotic approximations

5 —3.859%x 107 ~3.858x10°° 3.0x 1073 3.1x10°?
10 2.555x10°° 2.555x 10~¢ 73x10°4 6.3x10°*
15 —7908x 107 —7907x 107 1.2x10°4 27x 104
20 3.195%x 1077 3.195%x 1077 27x107% 8.7x10°°
25 ~2998x10°° —2.968x10~° —87x1073 1.2x107?
30 5516x10° 8 5.518x10°® 29x10~* 8.7x10"¢
35 2859 % 10°® 2.860 x 108 29%104 —23x10°%
40 2311x10° 8 2311x10°8 1.9x 104 —22x1077
45 1.607 x 108 1.607 x 108 1.5x10°* —22x10"¢
50 1.142x10-# 1.143 x 10-¢ 1L1x10-* —64%x107%

The convergence is most rapid when |z{"|=|z{?|; this occurs for a=2v—'2

which implies that z{""= —z@=(1+v"?)/(1-v"?). As W— + o, v—0, and
1z = |z8] — 1, the exponential decay of the ¢/** is lost, and convergence
becomes slow. The emergence of a second length scale, proportional to W2
which is much shorter than the length scale of order one which comes from |y, ),
is responsible for this deterioration of the convergence rate as W becomes large; the
basis functions £{*"*)(a; x) introduced in (5.3), which involve only the single length
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scale 1/a, cannot cope with two widely disparate length scales. The cure is the intro-
duction of auxiliary basis functions, such as the A{s, z,, o, @, a; x) introduced in
(5.25), to handle the second length scale.

The analysis of the convergence rate given above shows how to choose the
parameters ¢ and z, which appear in # (the parameters a, o', and « should have the
same values in 4 as they do in the £*"*)(a; x)). We choose a’ =2 as before; a will
be chosen later. Equations (5.32) and (5.37) imply that the functions A which
accelerate the convergence associated with the singularity of g'**)(z) at z{"’ have
o= —oif «>3; Eq. (5.32) and (5.39) imply that the functions which accelerate the
convergence associated with the singularity of g'>*)(z) at z{?) have 6 =1 —a — v for
a > 3. A key consideration in the choice of basis functions is the ease with which the
relevant matrix element integrals can be evaluated. Appendix D discusses these
integrals in detail and shows that o < 2/+ 1 leads to considerable simplification in
their evaluation for the /th partial wave in hydrogen. Since /=1 here, this condition
and the condition above can be satisfied only for =3, which is the choice we
make. With the choices «’ =2 and a =3, the basis functions &!**(a; x) are not
orthonormal with respect to the inner product {f{g) = j‘{fm g(r) dr, but the
Gram matrix and the matrix of the Hamiltonian with respect to the £*~*) are band
matrices in which only the elements on the main diagonal and adjacent to the main

TABLE V

Improving the Convergence Rate

N M=0 M=1 M=2 M=3
Errors when W+ 3= 10, v~ 0.22, 2P~ 1.576
5 10x 103 21x10°% 1.2x10°1° 8.0x10~
10 1.1x10-° 38x%x10°° 52x 107 13%x10-Y
Errors when W + 1=10% v~ 0.071, z{» x 1.152
5 8.1x1073 1.8x10°* 79x10° 42x10-"
10 1.0x1073 70x 108 1.1x16-1° 23x10-4
15 1.9x10* 5.1x10°7 3.8x10-12 39x10° 1%
Errors when W+ §=10%, vx0.022, ' ~ 1.046
5 1.t x10°2 99x104 16x10°8 28x 1010
10 24x1073 1.I1x10°4 92x 1010 8.7x 1012
15 80x10—* 22x10°° 1.1x10°% 6.7x 101
20 33x10°¢ 58x107° 20x 1071 81x10~ 1
Errors when W+ 1=10% v~ 0.0071, z¥ ~ 1.014
5 12x107? 20x 103 6.6x10° 23x 10710
10 27x1073 33x10°4 74x10°10 1.8x 101
15 1.0x 1073 95x10-3 1.6x10°1° 2.8x10-12

20 4.7x107* 35x1073 46x 1071 66x10~"
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diagonal are non-zero (see (5.57)-(5.60) below). Appendix D also gives a brief
discussion of matrix element integrals for helium, where similar simplifications can
be achieved by an appropriate choice of «.

Table V shows the dramatic improvement in the convergence rate which can be
achieved when the functions A[ —2—v+k, (2+av)/(2—av), 2,3,a;x] (with k a
non-negative integer) are added to the basis to handle the second (short) length
scale which emerges in the Bethe logarithm problem when W becomes large. N is
the number of Laguerre basis functions which are used, and M is the number of
auxiliary basis functions #; a has the value 1.9991, which implies that z{"’ ~ 4 x 10%;
the location of z{*' then determines the convergence rate. The errors are relative
errors. The deterioration in the convergence rate as W increases and z{?’ moves
closer to one is readily apparent. Because these basis functions were derived by
inverting the method of Darboux, which breaks down as v— 0, the numerical
performance of these auxiliary basis functions is better than expected. This can be
understood by comparing the asymptotic expansion (5.41), which was obtained via
the method of Darboux, with its uniform replacement (5.49). The principle
difference (other than the use of the Stirling approximation for I'(3 4+ v+ n)/n!) is
the replacement of the constant coefficients in (5.41) by the slowly varying coefficients
b (v, nt) in (5.49); it is the slow variation of these coefficients, which becomes
slower as v gets smaller, which is responsible for the success of the auxiliary basis
functions A.

We have looked at the auxiliary basis function which is obtained by inverting the
analysis which leads to uniform approximations like (5.49). In the case o« = 3, which
is somewhat simpler, the result is

S —1y
x?exp(—ax/2) Y F(i_it_vl-i———ﬂ

n=0

2—av 2—an\”
sz,[2—v,n+4,n—v+3,—(2+av>]< » >x. (5.53)

Matrix element evaluation with this function is considerably more difficult than
matrix element evaluation with the functions 4; this—together with the impressive
numerical performance shown in Table V—leads us to believe that the functions A
are a better choice.

Although it is not customary to discuss methods which do not work, we believe
that a brief analysis of the obvious two-length-scale variational trial function

M N
Tuwla bix)= Y, e arx)+ Y diF NI bix)  (5.54)

m
m=0 n="90

would be useful. Numerical tests show that a trial function like x,, (g, b; x) is not
effective in handling the second length scale which emerges at large W. The reason
(5.54) does not work can be understood by applying the rate of convergence
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analysis developed above. The functions &!*-*(b; x) used in (5.54) can be expanded
in the ¢*~"(a; x):

E (b x) Z elr @l (g x), (5.55)

The analysis above applied with f(x) =" *(b; x) shows that ¢ = —m —a — 1 and
zo=1{(b+a)/(b—a) for the expansion (5.55), so that the coefficients e, have the
asymptotic behavior

e D = D(m)yn @ *"[(b+a)(b—a)] " [1+0(n "], (5.56)

where the D(m) are (computable) constants which are independent of n. When the
length scales 1/a and 1/b are very different, the exponential factor [ (b + a)/(b—a)] "
approaches either (+1)™" or (—1)~", and the power law factor »n*®*" becomes
dominant. As m increases, the behavior of this power law factor goes in the wrong
direction—what is wanted is power law factors which match the power law behavior
of the ¢!*"* in (5.2), and for which the power of n decreases as the number of functions
added to accelerate the convergence increases. The functions h(g, z,, &, 2, a; x)
defined in (5.25) have this desired behavior; the functions £ *)(4; x) do not.

We will now show how asymptotic formulas for expansion coefficients obtained
via the above rate of convergence analysis can be used to obtain an asymptotic
formula for the error 4 — Z in the expectation value of the resolvent calculated from
the Schwinger-Levine variational principle for the hydrogen ground state. The first
step is the asymptotic Cholesky decomposition of (&) (A4 + W) |, >, which is
most easily done if (&, | (4+ W)|&,. > is a band matrix. Thus we use the basis
functions &> *(a;r), for which

Gl A+ W) & D =(H-E, + W) o

=Tk,k'+ Vk‘k'+(_En+ W)Gk.kr, (557)
where
1 o= [8E3 3 Na;r) 6% asr)y 2 23y (23
Tk.k'—_ J‘O [ or or +ﬁék ((1, r) ék' (aar)] dr

2
——-%[,/(k+1)(k+4)5k+1'k,+2(k+2)5k'kv+~/k(k+3)5,(,,,,(,], (5.58)

1

vV
kk2

C(z Nayr) <;r1—) EENa;rydr= —ady o, (5.59)

1 (=
Gew=3 j £ Var) EEas r) dr

— Sk 1)k +4) 8y o+ 2k +2) 8, o~ Sh(k+3) 0, 1 4. (5.60)

595/226/1-9
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Because (| (4+ W) &, > is tridiagonal, the Cholesky decomposition formulas
(4.17) and (4.18) simplify to

Uk—l,kz(H'_En+ W)k~l.k/Uk\l.k~la (5-61)
Uk = {(H=E,+ W) i —[H=E, + W) _1 /U1 1P} (5.62)

A large k asymptotic expansion of U, , can be obtained by looking for a series
solution to (5.62) of the form

e o}

Uk,k~k”2 Z ukk¥l. (5.63)

i1=0

The lowest order equation which determines u, is a quartic equation with the four
roots + 2 *2a+ (W +1)"?; the correct root can be selected by comparison of
the asymptotic results with numerical Cholesky decomposition. The asymptotic
expansion of U, _, , can be obtained by inserting the asymptotic expansion of U, _,
in (5.61). The results are

Uk.k=\/§(§+%)[1+(1—§)k**+0(k2)} (5:64)
kfa 1 v\, B
U, l‘k=\/%<§_;>[1+(l+§>k + Ok 2):l, (5.65)

where v is defined in (2.36). The asymptotic expansion of the coefficient ¢, needed
to calculate the asymptotic expansion of ¢, from (4.25) can be obtained by
repeating the calculations above which led to (5.38), (5.41), (5.42), and (5.49) for
the case o = 3. The analogues of (5.38), (5.41), and (5.42) are

Jen_ ___16v2-a) <2—a>"{1+ 2+a
T Sall—v)(2+a) \2+a atn +2)
+[1 ~ v2a3(2—a)2] (2+a)

-3
H=v) | 3@minmey o ‘Og("))}’ (5.66)

2—av>” 1“(n+2-+—v)l:1 (1+v)2=v)(2+av)?

12 = conin

2+av n! Bav(in+1+v)
v(1+ W2 =3B -v)2+av)? .,
128(12\'2(}1 + 1 + v)(n + V) + 0()1 ):l’ (567)
and
8nv*(2—av)’ [ 8av(l —v) Jv
C ()= —1. 5.68
) 3 @1 =v?) sin(nv) M2+ v)(2+ av)? LT +v)(4—a™v?) (568)
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Approximate methods are normally used on exactly solvable problems in order to
prepare the ground for their use on more difficult problems which cannot be solved
exactly. Since this is our objective here, we consider only the case in which the large
n behavior of ¢{>* is dominated by the contribution from 7¢*,>. I v is large enough
so that the expansion (5.67), rather than an analogue of the uniform expansion
(5.49}, can be used, ¢, has the asymptotic expansion

3:/2,.5/2 n
c:,=2 2q C () 2—av
2+ av 24 av

2 2,2
xn"{1+[§v+(2‘v V)@ +an )Jn‘+0(n2)}. (5.69)
2 Rav

The result (5.69) is used in (4.23) to obtain the error A —Z for N large. The sum
over n in (4.23) can vary too rapidly to permit use of the Euler—MacLauren sum
formula (replacement of the sum by an integral plus corrections). Therefore we
introduce the finite difference operator 4,,, defined by 4, f(n)=f(n+ 1}—f(n), and
apply the summation by parts formula

Y S A= —f(N+ DN+ )= 3 glr+ D fn) (570)

twice, first with f(n) =n" and g(n) =z?"/(z* — 1), and then with f(n)=n" — (n+1)”
and g(n)=z"*2/(z2— 1) to obtain

oL 22N+2 I
Y n"zz"=1_72N"[l+]_'”2N"+0(N‘2)}. (5.71)
n=N+1 “ “

Evaluation of the sum over n in (4.23) with the aid of (5.71) yields

s_a@Q—av) Lo (2—av o
T 2 +av)? [C50] <2+av> N
2 2.2
x{1+[6v+(2-v L‘:f" ! )]N’+O(N‘2)}. (5.72)

The exact value of 4 — 4 is compared with the right-hand side of (5.72) in Table VL.
It can be seen that (5.72) works well for moderate W, but breaks down for W large
(and v close to zero). This breakdown occurs because (5.67) must be replaced by
the analogue of the uniform expansion (5.49) if the product Nv is not large.
The summation formula (5.71) must also be replaced by a more complicated for-
mula in this case, because v close to zero implies that z= (2 — av)/(2 + av) is close
to one.
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TABLE VI

Asymptotic Estimates of A — 1

N A7 Eq (5.72) Relative error
W+i=10,v~022,z{) ~ 1.576
5 3.187x10°° 3.095x 1077 29x102
10 3.299 < 107 3261 x 107 1.2x10°2
15 3.@53x10"" 3.631x10°° 62x103
20 4,084 x 10~ 4068 x 10" 39x1073
25 4561 x 1071 4549 x 1013 26x%x10°°
30 5.079 x 1071 5.065x 10~ 1* 27x10°3
W+ 1=10 v 20071, 2~ 1.152
S 2658 x 1073 1.525x 103 43x10°!
10 3.452x10°° 2,561 x 10¢ 26x107!
15 6.288 x 107 5.280 % 1077 1.6x 107!
20 1.308 x 107 1.170x 107 1.1x107!
25 2.897x10°8 2.684x107¢ 73x1072
30 6.630x 10~* 6.273x 10~° 54x10°2
W+ 1=10% vx0022, z{" ~ 1.046
5 3.769 x 10~¢ 5510x 1077 85x10"!
10 7.982x 107 2.000 x 107 7.5%x 107!
15 2670 %1077 9.471x 108 6.5x 107!
20 1L.110x 1077 4986 x 1078 55x%x 1071
25 5221 x107% 2775% 1078 47x107!
30 2.657x 1078 1.597x 108 40x107!
W+1=10% v=00071, 2P~ 1.014
5 3950 x 1077 8.524x10°° 9.8 x 107!
10 9.021x 10 *® 3864 x 10~° 9.6x 107!
{s 3338 x 1078 2324 % 10°° 93x 107!
20 1.568 x 10 ~# 1.568 x 10~° 9.0x 10!
25 8.484 x 10~ 1.126 x 10~° 8.7x10°!
30 5044 x 10 ° 8.413x 1071 83x107!

The methods outlined above can be used to construct the uniform analogue of
(5.72) which remains valid when N is large with Nv not large, and to extend the
asymptotic approximations to A— 4 to higher order. They can also be used to
include the contribution /\*? from the singularity at z{'; this latter extension
contains an oscillating interference term between the two singularities when z{!’ and
z{?) have opposite sign, as is the case when the convergence rate is optimized by
choosing a to have the value for which |z{"| = |z{?)|. However, since it is our intent
to be illustrative rather than exhaustive, we have elected to stop at this point and
leave these further extensions as an exercise for the reader.

We now discuss auxiliary basis functions which can be used to handle the second

(short) length scale at large W for atoms and molecules other than hydrogen. If
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f3(W) defined in (3.7) is to be calculated via the Schwinger-Levine principle
(4.1)-(4.2), the exact |¢) for which the maximum is achieved is given by

to=% ¥z 1 (”'“—Rk'“)iw (5.73)
Amy = n ) .
MO L S T H-E W)\ =R,
The derivation of the large W asymptotic expansion in Section 3 shows that the
crude approximation (H—E,+ W) '~ W ! is adequate except for the first few
partial waves in the partial wave expansion of the r;dependence of
{ry, Ty, ., ty¥,> about R,. Even for these first few partial waves, this crude
approximation is adequate except for |r,—R,| small, where more elaborate
approximations, such as (H—E,+ W) '~ (3 p; —E,+ W)~!, are needed. We
exploit these observations and consider a class of approximations |z, > = (7%,
where

r

Z(s) - - L ks L j,M—Rk,M AT
=T T Z| 1t v () o - | 7

The superscript s indexes the different approximations. The vector |nj~/f,f""> is an
approximation to [, ) which gets the small |r,— R, | behavior right in the first few
partial waves. We will consider approximations of the form

1 !
<rl’ Iy Ty | w(nj’k'> = z Z Yl.m(ellk’ ¢j»k) R'lk)(lrf—Rkl)

=0 m=—-1/

1 k)

XLrm o s B g Bps P g, (5.75)

where f{%% is defined in (3.30). It should be noted that the r /{5 in the square
bracket in (5.75) remains finite as » —0, because f}\) ) behaves like ' for r -0
[20]. We have included only the /=0 and /=1 partlal waves in | X)) because
this is enough to keep the second term in (5.74) finite when |r,—R,| - 0. The
function R{® is a function which decays exponentially at large distances and which
has the correct cusp behavior R¥(r)=r'[1 —Z,r/(l+ 1)+ O(r*)] for small r. The
simplest exponentially decaying function which has this cusp behavior is the lowest

energy hydrogenic function in the /th partial wave, which is
R(ry=r'exp[ — Zr/(I+1)]. (5.76)

The vector |x%:**)> is an approximation which is chosen to get the small Ir;—R,|
behavior right; we will consider

_ 1 rom—R
LUK LN LM h MUK 577
i ? (%p}?—Zkh'}-—erl—En‘*' W)( |rj_Rk’3 ) l/l > ( :

. 1 r:ay— R -~

(ki _ LM o M (k) 5.78
14 = (R ) 78)

595:226:1-10
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and a third approximation to be specified later. We now analyze |y % ?>. The
partial wave expansion (3.23) can be used to show that

1 S (Tim—R ,
[ a1 (500-Et W) > (B Y00 4100
J

xR —Re)= 3 (4/3)" (m+ M| 1, M |1 m

I'=1I1+1

X Yiome st (0500 85) M0 14— Ryd), (5.79)

where (!',m+ M| 1, M |l, m) is the Gaunt coefficient (see (C.7)) and

ILin, p

MgR(ry=v! J dr'g,(v'r, v ) Ry, L ((r). (5.80)
0

The function M%) (r) defined in (5.80) can be handled via an integration by parts

Linp
similar to the one used to evaluate (3.28). Integrating (r') =% *'g,(v "', v~ r') and
differentiating (') '*%~' R{®, _ ,(r') yields

Zkv21—4p+ 3

M) = FEER () + [ ar(ry-reae
0

lin:p [—-2p+2
X R, 1) 8G, (v~ 'r, v 1r)or, (5.81)
where
MR (ry=(""r)"2**%=2D, (v 'r) R¥,,  ,(r). (5.82)

The factor 0G, (v 'r, v 'r')/0r in the second term of (5.81) peaks sharply at r=r".
Because the peak looks like the derivative of a delta function rather than a delta
function, the contribution from this term is down by a factor of v? relative to the
first term. Thus we are led to approximate M {/.%)(r) by M{/,*¥)(r), and define the
third approximation |x{;** >, which was to be specified later, by

<r1’ Ty, o, Iy I X%k;3)>

=le é Y @n/3) Ll m+ ML, M|lLm)

I1=0 m=—-1 I"'=141
X Ym0 86 ML 01yl — Re])
—lg(j.k )
X[r f}’}”")"(rl’rz”"’rj—l’rj+l""’ l'N’r)]r=0- (583)

For z large, D, (z)~2z%~%. Thus MY X (r)x W='r~2R¥®,  \(r) for v='r large,
which is the result of the crude approximation (H — E, + W)~ !~ W ~'. Integration
by parts can be combined with the basic result
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17d*> 2d I(I+1
st e b s

to show that

w© - 1{d?> 2d li+1) ~
R R | | RN A R0
=ro drﬁﬁ;j},’f,);(") R;ﬁ)2p+l(r)+vz144p+2j ‘rz dr
o 0

d 2
x [(v‘lr)*l'* 2p--1 D,'p(v"r)]z [E r—/+2p7 1R1[k—]2p+ l(r)]
=f0 dr LR RE,, (1) + Z2v3 8, 010+ O0P). (5.85)

The approximations 1%) obtained by using the |54} in the Schwinger-Levine
principle (4.1)-(4.2) all have large W expansions which agree with the exact
expansion (3.1) through the first three terms. The results are summarized by

i T6) zl: |<i£€l]|z;;]z;((:lzk(rj‘M—Rk,M)|rj—'RkI73ll//n>|2
M=—1 M =1 <2$!)IH—E':+W!2$!)>
=C,W "4+ C,W n(W)+C, W !
+COW 24 O[W 2 In(W)], (5.86)
4
where
n—1
Cy=Cy+ 3, K¢¥ml Pl DI* (En—E,) (5.87)
m=0

The C§’ for the various choices of |7{)> can be worked out with the aid of (3.43),
(3.51)~(3.55), and (5.84)-(5.85). They have the form

N K
Cif’=C4+7r\/5 Y Y ZydY 8, —R) WD, (5.88)
j=1 k=1
where
s =0, (5.89)
5 = é 2 +81In%(2)—81n(2)= —~0.056619 .., (5.90)

8P =2724+81n%2)—81In(2)-5=—0.121817.... (5.91)
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The neglect of the coulomb potential —Z, |r,—R,| ' is responsible for the
difference between C{? and C, given by (5.88) and (5.90). The use of A} (r)
instead of Mﬁ’,,";,(r), and the neglect of the coulomb potential, both contribute to
the difference between C{ and C, given by (5.88) and (5.91). These results are
independent of the exact form of the function R{*’; any exponentially decaying
function which has the right cusp behavior will do.

The basis function introduced by Schwartz to handle the second length scale at

large W has the form

& (= Riu
=% T 2 () DRI ) (592
¥, - k

in our notation. The approximation Zﬂ;;’ obtained by using Schwartz’s function
173> in the Schwinger—Levine principle (4.1)-(4.2) also has a large W expansion
which agrees with the exact expansion (3.1) through the first three terms. This
expansion again has the form (5.86)-(5.87), but C%” is replaced by

N K
CO=Citn Iy T Z,i[(zi5<3’—4En)

j=1 k=1

1 ! :
<RI WY~ T PR 0.0 ] (599

m= -1

C'> differs from C, because Schwartz’s approximation neglects the coulomb poten-
tial, approximates M%) (r) by M%) (r), uses ./2W instead of v ' = /2(W - E,)

Lin.p linip
in the argument of D, (jr,—R,| \/2W), and gets the small-|r,— R,| behavior
wrong in the higher partial waves.

Matrix element integral evaluation tends to be easiest with the function |7)).
The use of functions such as |74, (7%, and |74}, which lead to more difficult
matrix element integrals, can be justified only if they get additional terms in the
large W expansion right. This criterion implies that [7> and |7{})) are the
preferred choices. Another attractive possibility is a modified version of {7}'> in
which M" A’( r) is replaced by a linear combination of the functions # introduced
in (5.25). ThlS replacement puts in the coulomb potential from |7}’ > approximately
and corrects the error in |7}, ) which came from the approximation M {5 (r)~
MU k) (r)

lLin.p

APPENDIX A: THE METHOD OF C. SCHWARTZ

By writing [" f(W) dW as limy_, [¥ fo(k)dk and using [§ dk = K and
{% k=" dk=In(K), it can be shown that (2.12)-(2.16) imply that
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n—1

B= 3% K¢l Pl (E,—E,)In |E, — E,|

, K 1 "o WYl
e { [k o | G X, e ) P

n—1

-y (Em-E,,)|¢m><wml]P|wn>ln(K)}

= lim [.@[dek Y|P (H—E, +k)"'Py,>

— Y P-Pl,) K+, [P-(H-E,)Py,) 1n(K)]- (A1)

Here 2 | means that the singularities of the integrand at k=E,—E,, m=
0,1,2,..,n—1, are to be handled via the principal value prescription. The final
expression in (A.1) is Eq. (7) in Schwartz’s paper: {y,,| P-P |{s,,> is the negative of
Schwartz’s (V2>, (Y, | P-(H—E,) P |, is Schwartz’s 2nZy 2(0) (see (2.7) above),
and <y,|P-(H—E,+k) 'P |y, is Schwartz’s J(k). The comparison of our large
W asymptotic expansion (3.1)-(3.5) with Schwartz’s equations (17)-(19) is facilitated
by noting that our f,(k) is Schwartz’s kw(k), and our 4z {y, | d(r;—R,) [y, is
Schwartz’s g,(0).

The present paper improves on Schwartz’s pioneering work in several respects:
(1) Our method works for all of the logarithmic mean excitation energies of physi-
cal interest. It also works for other analytic functions of operators. (2) It works for
excited states. (3) A very rapidly convergent numerical integration scheme,
complete with error formulas, has been provided. (4) Schwartz’s asymptotic formula
for the resolvent matrix element at large negative energies has been carried to one
more term and extended to molecules via a systematic method which shows where
the various contributions come from. (5) The convergence rate for the variational
approximation to the resolvent has been analyzed and an error formula given.

APPENDIX B: THE NUMERICAL INTEGRATION METHOD

Because it is as easy to derive the needed parts of Stenger’s numerical integration
method as to describe them, this appendix begins with a brief derivation. These
needed parts are then used to obtain useful, easily computable error bounds for the
numerical integration. The derivation begins with the formula

cos[(nz)/h]

c 2isin[(nz)/h]f(z) dZ:”";% S(nh), (B.1)
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where the contour C consists of two pieces parallel to the real axis, one running
left to right from —co —id to oo —id in the lower half plane, the other running
right to left from oo +id to —oo +1id in the upper half plane. It is assumed that
d is real and positive, that f(z) is analytic on C and in the strip between these two
pieces of C, and that f(z) decreases fast enough as |z| —» oo within and on C to
guarantee convergence of the sum and the integral in (B.1). Equation (B.1) can be
established by evaluating the contour integral on the left-hand side as a sum of
contributions from the poles of the integrand at the zeros of sinf{nz)/A]. It is easy
to show that

cos[(mz)/h] 1 expl (2miz)/h] __1+ exp[ —(2miz)/h] (B2
disin[(nz)/h] 2 1—exp[(2miz)/h] 2 1—exp[ —(2miz)/h] 2)

By using the first form on the piece of the contour C which is in the upper half
plane, the second form on the piece in the lower half plane, and exploiting the
analyticity of f(z) to move the integration contour to the real axis for the + 4 f(z)
pieces, (B.1) can be brought to the form

[* sxyde=n Y stk +eh)ter (Vo B)ter (N, h)  (B3)
- k=—N_

where

. fw exp[ —2n(d + ix)/h] f(x — id)
== T T expl—2n(d + ix)h]

J'“ exp[ —2n(d— ix)/h] f(x +id)
) 1—exp[—2n(d— ix)/h]

dx

(B.4)

is the interpolation error (we call this the interpolation error because it arises
from interpolation via the Whittaker Cardinal function in Stenger’s derivation)
and

N1
GT,V(N,h)=h Z flkh), (B.S)
k=—n0
er (NB)=h Y f(kh) (B.6)
k=N+1

are the truncation errors. Equations (B.3}-(B.6) are essentially equivalent to
Stenger’s (3.12)-(3.14); in particular, the interpolation error &,(h) is Stenger’s
n(f, k), and the sum ¢,(h)+e, _(N_,h)+e¢ey (N, h) of the errors is Stenger’s
nn(f, hYif N_=N_ = N. Stenger’s (3.14) contains a misprint: the sin{ (n/h)(t — id)]
in the denominator of the first term of the integrand should be sin[(zn/A)(1 + id)].
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The numerical integration rules (2.17) and (2.18) follow from (B.3) via the changes
of variabies

WM =exp(z)/[1 +exp(z)]; z=log[W"D/(1 — w)]. (B.7)
W =1+ exp(z); z=log(W'? —1). (B.3)
Error bounds for the numerical integration can be obtained by using the spectral

theorem for self-adjoint operators [33, Chaps. VII, VIII] to express f,(W'") and
f2(W?) in the form [33, p. 263, Eq. VII1.4]

SOV = [ F(E WD) (| PAEXEIP W, dE. j=1.2. (BS)

Equation (B.9) has been written in Dirac notation, rather than the notation of Reed
and Simon, so that the analysis will be easier for a physicist to follow. Here
|E>{E| dE is the projection valued measure in terms of which the spectral theorem
takes the form [33, p. 263, Theorem VIIL6]

Q(H—E,) Q"= E|E)(E|4E. (B.10)
0
The functions F;(E, W*) are
W we E
F,(E, W“))=W— 1, F,(E, W(z')=E+ W(z)—— 1+ W (B.11)

A bound on the interpolation error ¢,{k) will now be calculated. The changes of
variables (B.7), (B.8) yield

aw® exp(z) exp(z)
1) — —
FiLE W) dz '[E+(E+1)exp(z) 1] [1+exp(z)]* (B.12)
2 dW® exp(z)[1 +exp(z)] 3 exp(z)
B W) === irepi) PO E Texpa) (B.13)

The right-hand side of (B.12) has first order poles at z = (2k + 1) ir with residue E,
and first-order poles at z= —log(1 + E ')+ (2k + 1) in with residue —E, for every
integer k. The right-hand side of (B.13) has first-order poles at z=(2k + 1} iz with
residue E, and first order poles at z=1log(1 + E) + (2k + 1) in with residue — E, for
every integer k. The interpolation error £\)(E, h) which is obtained when (B.4) is
evaluated via the calculus of residues with f(z)=F,[E, W) (z)] dW"/dz is

= exp[ —2n2h 2k + 1) —2nih'log(1 + E~ )]
()(E, h) = 2niE
i (B, h) = 2miE } {l-exp[—27z2h"(2k+1)~2m’h“log(1+E")]

k=0

expl —2n%h ' (2k + 1) + 2nih " log(1 + E~)]
1 —exp[—2n%h 12k + 1)+ 2nih~'log(1 + E~Y)]§"

(B.14)
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The interpolation error £'?(E, h) which is obtained when (B.4) is evaluated via the
calculus of residues with f(z)=F,[E, W®(z)1dW'®/dz can be obtained from
(B.14) by replacing log(1 + E ~') by —log(1 + E). It is straightforward to show that
these interpolation errors have the bound

. = exp[—2r’hT'(2k+1)]
D(E, h)| < 4nE
VB IISATE ), T2 T3k + 1]

k=0
< nE
“sinh?(z2h 'Y

j=1,2. (B.15)

The interpolation errors &¢'//(h) which are obtained when (B.4) is evaluated with
JE@)=1;{WYNz)]dW/dz are

6= [ s E ) Y| P EYCEIP W) dE, j=1.2. (B.6)

If the bound (B.15) is used in (B.16), the integration over E can be performed to
obtain the interpolation error bound (2.20).

Truncation error bounds can be obtained by employing the inequalities 0 <
—F(EE WY —F(E, W <lfor W >2W{>0E>0,and0< F(E, W) <
FAE, WX Efor W2>W?>1, E>0, in (B.9) to obtain

0< —/AWIY < —f (WD)

<Y, P-OTP YLD, wl'zwil >0, (B.17)
0< fAW)Y S fo(WP)

<Y, | P-OQYH—E)OUP |y, wh>wd>1. (B.18)

The truncation error bounds (2.21)-(2.23) follow by using (B.17) and (B.18) in the
definitions (B.5) and (B.6). The second form for S*Y(N) in (2.24) is obtained by
rewriting the summand in the first form as s exp(—kh)x [1 4 exp(—kh)]~? and
expanding the factor [1 +exp(—k#)] ~? in powers of exp(—kh) to obtain a double
series. The (original) sum over £ is then performed with the aid of the formula for
the sum of a geometric series. The asymptotic formula (2.26) for the truncation
error ¢ (N, h) is obtained by using the asymptotic formula (3.1) for f,(W?)
in the definition (B.6) and summing term by term.

APPENDIX C: DETAILS FOR SECTION 3

This appendix records certain details which have been omitted from the presenta-
tion in Section 3. The bound (3.11) will be derived first. We begin with the explicit
momentum space representative
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<pl’ p2’ ooy pN, (T_E + W)Al/zrrl(T_En+ W)-l/2 'P’u P’2, ey p;\l>

i D (p) Y, . (0,,6,) P ,(p) Y, .(01,8))
= (k+/+1)gq

s

{

P,—P/): (C.1)

0

Ij—'[(

where

(pk.l(pl) - 22/+ Zq(21+3),’2”

KUGk+1+1) ) o oy @eaye (pz‘qz
P S A At - 2 ¢+ 1 ! , C2
“Vak+ g1y Hpita) < \pirg) (Y

with C/*! a Gegenbauer polynomial in standard notation and

N
=\/2(W—E,,)+ Y iplt (C.3)

i=2
Formulas (C.1)-(C.3) are obtained from the bound state solutions to the hydrogen
atom in momentum space [ 34; 10, pp. 36-40] by fixing the energy at a negative value
and letting the coupling constant in front of the Coulomb potential be the eigenvalue
(note that this requires rescaling the momentum in the hydrogen atom bound state
wave functions by a factor of (¢ + 7+ 1) g). The functions @, ,(p,) Y, ,.(0,, ¢,) arca
complete orthonormal set in L?[R*]. It follows from (C.1) that
(T—E,+W) "2 r (T—E,+ W) '? is a bounded operator from the space

L*[ R*™] of square-integrable functions in 3N dimensions to L>[ R*¥] with 2-norm

WT—E,+ W) V2r T —E,+ W) "?|,=[2W- E)]""'Z‘ {C4)

A similar calculation shows that (T—E,+ W) "2 |r, —r,| " (T—E,+ W) "% i
an operator from LZ[R*¥] to L2[R*¥] with 2-norm

T —E,+ W) '"2Ir,—r,| (T E,+ W)™ |, = [4(W—E,)] (C.3)

ry in (C4), and |r,—r,]| in (C.5) can, of course, be replaced by |r,—R,| and
Ir, —r,| without altering the conclusions. The result (3.11)-(3.12) follows.

We now consider the evaluation of ¥}, _ | (5 | y{2°X)% for the case j=’,
k #k'. The “two-center” partial wave expansion

exp(—v = 'r, +r,4 1))
27 fry + 1, + 1y

-—i Z f i f(-l)"’l

=0 m=—0 h=0 m=—0h =0 my=—-10

x {dy, —my| ly, my |y, my) Yll,ml(gl’ &) Yy, (0,, ¢5)
x Yy, w05, ¢3)gl../2.13("_1"1, vir, v (C.6)

I5)
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will be used instead of the expansion (3.23). Here {/,, —m [ [l,, m, |5, m;) is the
Gaunt coefficient, which can be expressed in terms of Wigner 3-J symbols via

(=)™ Ly, —my| L, my |y, my )

= [ Yim(6:) Yiy f6, 6) ¥,y (6, 8) d2

z[(21,+1)(212+1)(213+1)]”2<11 l; 13)(’1 l, ’3>_ (C.7)

4n 0 0 0/\m m, m,

The Gaunt coefficient is zero unless /, +/, + /5 is an even integer and /,, /,, and /,
satisfy triangle conditions. The “radial” function g, , , is given by the integral
representation

a\"? o P2 3 Jl,- 12(12,)
811,12.13(—’1’22’23):(5) (_l)ll+lz+13f; H + J (Cg)

o 1+ 2 Falet (tzj)l/Z
The expansion (C.6) can be obtained from the Fourier integral representation

exp(—v lir, +r,+r;]) 1 4’k )
L I _ik- ' ]
2 vy 41415 473 jkz-*-v"2 exp[—ik-(r;+r,+1;)] (C9)

The exponential factor exp[ —ik - (r, +r, +r3)] is expanded by using

. ad . J+ (kr)
exp(—ik-r;)=(2n)*? Eo (=) _[(—k%mL

!
x 2 Y8 6i) Yiml0), 8)) (C.10)
m= —1{

for j=1, for j=2, and for j=3. In (C.10), k, 8., and ¢, are the spherical
coordinates of k, and r;, 8,, and ¢; are the spherical coordinates of r;. The
angular integrations over 8, and ¢, are performed with the aid of (C.7). Contour

integration can be used to show that

K, +1/2(Z1) I, +1/2(22) 1, +1/2(23)
8021, 22, 22) = (2m)2 (= D) ——7— = ’
1

(C.11)

Z§/2 z;/Z

for z, 20, 2,20, z; 20, and z, >z, + z;. Formulas for the cases z,>z;+ 2z, and
zy2 2, + 2, can be obtained from (C.11) by cyclic permutation of the indices 1, 2,
and 3. Contour integration can also be used to show that
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gl.,ll,13(21,229 z3)

. 2\ V2 I, +1/2(Zn)
=[gl|,12,13(zl,22’23)_<;> (—1)" _12—1/7‘—
1

Ky, o12(22) Ky oy y2(25) (2)”2( 1) Ky or2(21) 1y 10(23)

zy? zy? z}? zy?

g Ky v 12(23) (2)]/2 (—1y" Ky oval2y) Kiyyal2:) I yo1p2(23)

172 - 172 1/2 1/2
Zy T z z5 Z3

(2)3/2 K 1)2(20) Ky y0(25) K13+1/2(z3):|

- 12 172 1/2
i1 z, Z, Z4

(C.12)

for0<z,<z,+472;,0<z2, <2342, 0Kz, < 2, + z,, where

. n>? (z,2m 0!
g,hzz,za(zwz’ZB)‘T n.,%n; n M Mny—1,+1/2)
(22/2)2112\12‘1 (23/2)271371371
nyt Mng — b+ 1/2) ny ! F(ny— 1+ 1/2)

(C.13)

The sum over n,, n,, and n; in (C.13) is subject to the restrictions n, =0, n, >0,
ny 20, and n,+n,+n, < (!, + 1, +13)/2. The expansion (C.6) is used with
r,=r,—R,, r,=-r;,+R,, and r, =R, — R,.. Performing the angular integrations
with the aid of (C.7) yields

—R r—R
<l//an§jf,,f,(|r__*R:l> (3p}—E, +W)"<’4ﬁ) P WD

(r

o€
= (J, k, k')
v Z Z Z Mh ol oma, mpin (=l + 1)/2, (= I+ 1)/2
L=

x Ay, b, I, 1, 1y my, my) Yo my—mOk x> Gi i) (C.14)

where the angles 6, ., ¢, . specify the direction of R, —R,.. 4 and M are defined
by

A(ll’ [2, [3’ [a’ lbs mas mb)

_ L+ 1)L+ 125+ 1
_[ 47

X(ll , 13)(1,, 1 11>(1,, 1 1
o 0o o/\o o o/\o 0 o
1
—1)"
< (o, o)

m= —1

1 L 1 !
x( La h )( b 2 ) (C.15)
-m, —m m+m,/\m, m —m-—m,

) 1/2
:] (21 + 1)L, + 1) (—1)+ma
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Mlj. k. k")

Nl h,me, mpinipy, p2

e x
:f d’J dr' eIy g (v v Ty T R = Ry )
0 0

(i k, k") '
x plr p1+ Lmys b — 2p2+l.mb;n(r’ r )

(C.16)

The sums over /,, /,, and /, in (C.14) are actually finite, because the factor A4 in the

summand is non-zero only for /, =/,+ 1, l,=1,+ 1, and |/, — I,

<L<h+1,.

The integration over r and r’ in (C.16) is similar to the integration over r and r’

in (3.28) and is handled in the same way. We begin with the definitions

(1) s =
Gh.lz.l;;pl,pz("l! 23, 23)

1/2 ,
=<f) (_,~)h+lz+lzfm dr PP+l -2
N

Jy 12(tz3)
X Ty 12y, pl122) = T, (0)] 2

(27

2) - -
G/1~12~/1:p1v/':("'|’ 2y, Z3)

1/2 s
= T (_l')/1+/z+’3J dt P =i -2
2 e

Jp v 10(823)
X L1200 = (0] i plt22) ==
<3

(3)
G/I‘/z,/];,,l_m(zn 23, 23)

12
_ E (_i)111—/2+13fL dt ,2171*21’2‘/1‘/2*2
2 .

X L p120) = iy (O)IL, pol122) ~ T (0)]

(4) (zy, 25, 24)
Ny Bipr o pp\ @1 €25 <3

1,2 o
_ E _na+h+h * dt 2p14+2m-h—1 -2
2 (=0) 112"

X [y, o1z} T4y pol223) —J0 (0} 1, (0)]

ngl,'lz. Is;m,pz(zl s 225 Z3),
G;i)lz.ls:m.m(zl’ Z2s 23)’
G/h/zv/3:m.p:(2| » 229 Z3) = G;i)/z,l,z;m.pz(zl’ Z2s 23)’
Ggijlz.ls;m,pz(zl’ 23, 73),

2, <z3+ 24,

Iy s 12(tz5)
(1z3)'% 7

iy 12(824)
(1z4

)l,c“Z 2

Iy > 2y + 24,
Iy>z3+ 2y,
3>z +z,,
2, <z,+z,,

Z3<Z]+32.

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)
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The G defined by (C.21) is the indefinite integral needed to evaluate the radial
integrals via partial integration. It is straightforward to show that

S 2o+ 10— 2pr+ 1 -
“1 “2 gll,lz.ls(“l’22a23)

82

=G, , .. (z1,23,23), 2y F 2,4 23,2, #F 23+ 2, 2 # 2, + 2,. (C22)
8z, fz, B,

It can be shown by differentiating through the integral sign in (C.17)-(C.20) that
the G"' are continuous with continuous first and second partial derivatives with
respect to z, and z,. Thus the discontinuities in G and its first and second
derivatives across the boundaries z, =z,+z;, z,=z;+2z,, and z; =2z, 4z, can be
computed by evaluating the appropriate differences of the G and their derivatives
across these boundaries. We make the additional definitions

(1 c e = G s o (1) a
DII-ISVIJlPI-PZ(&]’ ‘;3)— Gl(./z, /J;p1.p2(él’ “2> ‘3)— Gl;./g, /3;px_p2(“l’ “2s L3)’ (C‘23)
2) e Ve ) 2) . .
DllJ:-/lel‘Pz("’Z‘ “3) - G/],lz,l;q;pl.pz(zl’ Z3s 23) - Gl,,l),l;;p],pz("‘h 22, "-3)- (C24)
D'V is the discontinuity of G across the line z, =z, +z,, D® is the discontinuity

of G across the line z, =z;+z,, and D'V + D? is the discontinuity of G across the
line z3 =1z, +z,. It is easy to see that

DY (z),23)=DY (25, 23). (C.29)

h.h.Bipp: Lol 3 p2opy

Contour integration can be used to show that

Gl1./3.13;p|,p2(:l’ 27, 23)
=20 (=)' K, ,(z))
I,y 1,,‘2(2’3)
X Iy pl22) =1, (0] ——5—,  z,>z+ 2, (C.26)
“3
Gll. /I-IJZI’I-I’Z(Zl’ Z2s 23)

= (27"')”2 ( -1)12 [Ill,pl(zl) —Ill.pl(o)]
1. 1/‘2(23)

XK/:J’:(:Z) _’,‘_",2 ~— 7> 23 +Z[, (C27)
“3

Gll-’zvh;m.m(zl’ 23, 23)
— (21 (= 1) [y (20— Ty ()]

K13 (z3)

”
X [ py(22) = 1), p)(0)] _-t—]_'a 23>zt 2, (C.28)
Z3

S
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Gll-’Z, Islp\,pz(zl’ ZZ’ 23)

6 2 1/2
57 !
= Z G;{-)IZ-’SiPl-PZ(Zl’22’23)—<—) (="
j=1 n

Ky 4 10(23) (2

1/2
th‘m(zl)Klz.pz(ZZ) - ;) (_l)lz Kl|.m(zl)llz,m(zz)

172
Z3

K13 + 1/2(2_;)

I+ 1/2(23)

2\ /2 I
~(3) 1 Kt K e

Z;/z Z:l;/Z
2\¥? Ky 172(25) n\!?
_<;> K,l,pl(zl)K,z,pz(zz)———;—;/—z————Z(5) (—I)IJI,M,I(O)
K, 12(25)
x 1, ,,(0) he 2o Z2)<Zy+23,2,<23+2,,23<2z;+2,, (C.29)

172 ’
Z3

(1)
DI]VIZvI];plvPZ(Z[’ 23)

113+1/2(23)

T 1/2
=2(3) 1 L0 K )
3

2
o\ /2 K, 1/2(23)
—2(5) (=1)" Ly (0) I ,,(0) =12
23
+2[éﬁl4,)12‘/];pt,pz(zlaZzs23)+é;ﬁjlz,/3;pl,pz(zl,Zz,23)], Zy>2Z3, (C.30)

(L
Dll- i, /]ll’lypl(zl’ 23)

7 1/2
=2<—2_> (‘f)131/2,,,2(0)[],1,,,](21)——I,M,I(O)]

K13+ 1/2(23)

A(s
12 +ZG;\,)I1,I3;p\‘p2(Zl’22723)9 7, <1z3, (C.31)
Z3
where

A(1
G;IV)IZ»IJJPI-PZ(ZI’ Z2s 23)

- 3

ny, ny,ony

7.[3/2211 =21t h-2p2+ 1

n!nny! (2n—2p,+1)

(zl/z)an’ZpH-l (22/2)2712‘21724-1 (23/2)2,,3__,3,1
(2ny=2p>+ D) In, =L+ 2 My ~ L+ 1/2) T(ny — 15+ 1/2)’

(C.32)
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S(2)
Gln‘lz.ls;m.m(zl’ 225 23)

7 3/2 211—2p2+l
=—(=| 1,,(0
(2) ol )E:m nytny! (2n,—2p,+ 1)

(27/2)2n2 —2pm+1 (23/2)2n;+13

> C33
T~ L+ 2) Ty + [, + 3/2) (C.33)
G;iblz‘l;:m‘m(z“22’23)
n\? 2062,
(2> o ),,2},:,,, nytnyl (ny+l—py+1)
Amy+l—p2+ 1) 2 2ny—85— 1
(z2/2) (z3/2) ’ 3
F(n,+ L+ 3/2) [(ny— 5+ 172)
GA;:IIZ,ISCPI.pz(zl’ 22, 23)
=G‘522.)11.13;pz.p|(22’ Zy, Z3), (C.35)
ngs"lz.lz;m.m(zl’zz,Za)
=G‘$za-)ln.13:pz,m(22’zl923), (C.36)
GA(’f.)/z.lJ;mvpz(zl’ZZ’23)
U s (z5/2)m 0!
= I 0) 1, 0 . C37
3™ O el L R ) (€37)

The summation limits in (C.32) are n, 20, n, 20, n;,20, and n,+n,+n;<
1, +1,+1;). The summation limits in (C.33) are n, >0, n,20, and n,+n,<
1y + 1, — 1)~ p,. The summation limits in (C.34) are n, >0, n; >0, and
n,+ny<i({{—lL+4)—p,. The summation limits in (C.37) are n;>0 and
ny<i(l,+1,+165)—p,—p,+ 1. Analogues of (C.30) and (C.31) for D can be
obtained from (C.30) and (C.31) with the aid of (C.25). Equations (C.26)-(C.37)
show that G, ,, ... (2, 22, 2;) is zero at z; =0 and z, =0 and decays exponen-
tially as z, - o0 in z; >z, + z, and as z, —» o in z, >z, + z,. These equations also
show that D!, .. (z,,z,) is independent of z,, as indicated by the notation,
and zero at z; =0.

The result of integrating (C.16) by parts with the aid of the preceding formulas
is

MSI}' fz’-ljl.,’"a: mp.n;p1, p2 = v[l - Zpl the sz " 4[M;lJ: ll::’;3il:")av my.n;pr, p2

MU K k' b) + MU kKO ], (C.38)

h,lr, hy, mg, mpinspy, p2 &, B, 3, mg, mpsnipy,p2
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where

(J k. k' a)
My,

By my mpsnspy, p2

"'y T IR =R )

l:Js'-m.m(v

. ()
=£ dr Dy,
C

.
(4 . .
— plik kD ’
X[arpll ”2P1+1,”1‘.:/2—~2p2+l,mb;n(rs r )J f (C.39)
r'=1(iRg ~ Rpr{)—r}

(J ke, k';b)
M/xv DB, my, mp; i py Py

=[ a'DP, (v v IR — Ry |)
0

Lipyop2

é
— pli k&) '
X[a Ipll /2p|+],Im,:/2¥2p2+l.nl[,;n(r’r) ’ (C4O)
" r={(IRx —~ Rp: |} — r'|

M(,j, k.ok's ¢}
1.

fa 3, iy, mpi i py, p2

o0 oo}
N
=j drf dr'G ¥ YT VTR~ Ry )
0 0

2

(koK) (r, r'). (C.41)

X ar C"TI'V p1| 2o+ loma b= 2p2+ lompin

The analysis of (C.39)-(C.41) shows that, if IR, —R,.| is O(1) so that v~ ' [R, —R,.]
is large, the only contributions to Mj*;%0 . at order v’ come from the
pieces of the G|}, .., ,, terms in which the sum of the summation indices takes on
its maximum value - e.g, from the piece of G!), ., . for which n,+n,+n,=
1({; + I, +13). These pieces are the ones which would come from the evaluation of
the residue at 1= 0 if the (1 +¢?)~ " in (C.8) and (C.17)-(C.20) were replaced by 1;

this replacement is equivalent to making the approximation

exp{—v ' r, +1,+135])

2026 4
e T ] veo(r, +ry+r;) (C42)

for the partial wave expansion (C.6), ie., to approximating (T—E,+ W)™' by
(—E,+ W)~ '. All other contributions to My 1-% . can be seen to be of
order v° or higher. It follows that (3.20) is valid for j=;' and k # k' for all / and
{". It should be noted that the assumption |R,—R,.|=0(1) precludes letting
R, — R, to obtain the k=&’ result.

Finally, we consider the evaluation of X _ | (Y% | i/ X)% for the case
j#J'. There is no need to distinguish between k =k’ and k # k', because we can
expand r; and r; about R,, and r; and r;. about R,.. The partial wave expansion

needed for this case is
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1.2 1,2 —FE w =1 jar ’
<ru’rb|(2pa+2pb n+ ) ’ra’rb>

1 -
=govr K0R

o {la o I
=v 'Y X Y X Y004 Ym0 8s) Y, (00 60)

la=0 mag= —4y =0 mp=—4

X Y (O 85) &1, 1,0 ray v gy v, v ), (C43)

where R= \/(ra —r,)’+(r,—r;)* and

2t v 120taz)
L+ 2417 (t,2,)"?

1 r> e
glu.lh(za, Zps 24y zh)=‘2_j dta j dtb
- — o

T 12(,2) Ty s 12(8820) Ty, 4 12(1,23)
(t,2,)'"? (ty2,)"? (ty2)"?

(C.44)

Using the expansion (C.43) with r_, r,, 1, and r; replaced by r,—R,, 1, — R,
r,—~R,, and r; —R,., respectively, in (3.22) and performing the angular
integrations yields

1
Y O D
m =

x o0 ! 4 /,‘ I
=2 X Y XX AGL L Timy,my,mim))
=0 t=0 m=—1 my= Iy mj=~1 mj=*f
% MU kKD +0(v*), J#Ei, (C.45)

b Ly my om0+ D2, (0 — L+ 1)12

where 4 and M are defined by

AL L G om, my m), m))
= Oyt my sy, (~1)""+"'f (24 + DL+ DR+ 121 + D]
L1 I 1,)( A )( L1 r
(0 0 0>(0 0 0/\m;, mj—m;, —mj;/\m; m;.~m, —m}) (C.46)
(hJ' k k)

4 I mj, mj, m m I p}'
—2p ll+2
j dr, j der dr j dr,, r! )t ry

NG +2 (G —2pp + 1 -1 e PN I —1,

X (r )} (r )} i g/;,[lv(v ru’ v rbﬂ v ra’ v rb)
o'k, k) R

Xp[ —2p]+l by 1 mj';lj"2pj»+l‘m}'r:n(r"’ Fps¥as rb)’

(C.47)

5952267111
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with
gk kY ‘
p/,.m,;/,‘,m/';/]'. i (rw Fos ru’ rh)

=, () )T

3 3 3 3 3
xjd rd’ty, L dr Ay, A dPr L d

Gk KD ;
PRGN | SPS SYRTS FEETS IR TS JTNFTN SYIS PN 99

ik, k) .
xf/’m o LTI YRS SUNTS JRIMIRN PRI FIPRTRN JVS N /3 N (C.48)
where
(i /" k&) .
VAT ARanan | SN SIS FETTS JRPOES JAENTS FINET VI8 N Y|
= J. d‘(zk[ ko"j' Ylj.m,(gj,ka ¢i‘k) Y{,‘.m,v(gj'. ks ¢j"k')

PECITS PTG Y ST SRS SN FUNSTRNS SN 1T ) (C.49)
with r,=|r,—R,| and r,=|r, —R,.|. The sums in (C.45) are actually finite, since

A is non-zero only for /. =1 +l and //=/+1.
The integration over r,, r,, ¥, and r}, in (C.47) is similar to the previous radial

integrations and is handled in the same way. We begin with the definition

- . ’
Glu,/h(‘iu’ Zps Zas Zh)

1 = o t,t
L [ [ ke
7 (7 L T

S tez,) I, +3f2(taz:4) i+ 32(8620) Sy 4 112(£525)
13 1 7] 7
(tuzu) ' ( a"u) 2 (tbzb)l/ (tbz;w)lrz

It can be shown that G, ,(z,.2z,;z2,,25), 0G, ,(z,, 24; zn, 2,)/0z,, and
0G, (2., 245 24, 23)/0z, are continuous and zero when either z, =0 or z, = 0. It can
also be shown that

(C.50)

o2
— ly+2 ’h+2 b et '
’ Glu,[h( vaza"'b)_(za)“ b g/u.(p,(ztn“bﬂza?zb)’ (CSI)
0z, 0z,
G/“ la+ 1, Ip+ 1, lh("u,zuizb9zh)+G [b(za’zbsza’z;y)9
z,<zh,z,<Zzp,
’ . ’
G/,,+1,/,,.1,,+1,1,,(2a,Zu,zb,zb),
Z,> 20y 2, <2,
G ’e S 6[2] .t ’ (C52)
Lo do+ 1ot tot 1Zan 205 2y Z0) G170 (245 245 205 20)s

14 r
2,2y Zp>2Zp,

- ’ —
Gla,l,,(zaazbSAa»zb)—

- A3y et ot
Gla+l.l,,.lb.[b+l(zu’"a’zb’Zb)+G[n‘[,)(Za9bbazu’zb)a
Z,> 20, 2,> 2,
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where

Gla,<~’a.>‘1b,<|lb,>(za- <3Za,5>32Zp, <9 Zp, >)

2
== Sen(ly, < — Lo, >) Senlly, < — 1y, ») (zo)"* 2 2y
xr‘ & s, s L, v12(8aza <) Koy )y 10(8020, 5)
— sl (saza, <)‘/2 (saza,>)l/2
11,,‘< + 1,/2(szb, <) Kl,,_> +1720862p, 5) (C.53)
(552,, <)1"’Z (8525, >)U2 .
= /8/mz, o SEn(ls < — Lo ») SElly =1y )20 ¥ 20" 25, 0850
11,,‘ 12084024 <) K/‘,, 412084024, >) 11,,, <+ 12(85025, <)
(Sa_()za, <)]/2 (sa,Oza, > )1/2 (Sb, Uzb. < )1/2
K, . 1;‘2(-5'1;,021;, >)
b'(s: i (1+0(z; )], Sa0=5>0 for
10‘>=la‘<+1,sb’025‘0>0 fO[ 1b,>=1b.<+1, (C.54)
. 1 (z5) K. (z3)
G202 253 2 2p) = 22zt 2 TS BT (C.55)
Zp (z3)
GA}:,)Ib(Za’ zb; z/aa Z,b) = 2 [22(2;)“- (z;)la+2
11,,+1/2(Za) K1a+3/2(2;) b
@
K (zp) 1 (z3)
s e e | (©56)
Zp (z3)
A , K 12(2,) 11, 32(20)
G\ (2, 2452, 23) = i (z,)e+? ACE (z})", (C.57)
Za. b= [(za, > _za, < )2 + (Zb, > _Zb, < )2] 1/21 (CSS)

$a=2, 4[24 > ~ 24 <) COSh(E) + (2, 5 — 2, <) siNN(E)], (C.59)
55 =23 30z, » ~ 25, <) COSA(E) = i(2, » — 7, ) sinh(&)],  (C.60)
sa.0=2¢:lly(za,>—za,<): (C61)

Sb,0=za—,é(zb,>_zb,<)' (C62)
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The explicit expression (C.52) is obtained from (C.50) via the standard contour
integration method for the evaluation of Fourier transforms. The decomposition
J(tz) = S[H\V (1z) + HP(1z)] is used for J, . 3,(1,z,) when z,<z,, and for
Ji, 12(t,2,) when z,>z,. The integration path for the part of the integrand
containing H'" is deformed into the upper half plane; the integration path for the
part containing H'? is deformed into the lower half plane. When z, <z, and
v=1,+ 3/2, this decomposition leaves a pole at ¢, =0 in the individual integrands
which was not present in (C.50). This pole is handled by deforming the contour to
run below the point ¢, =0 before taking the integral apart; the piece containing
H'" will then contain a contribution from the pole, which must be evaluated in
order to deform the integration path for this piece into the upper half plane. The
integration over ¢, is handled similarly. The G terms in (C.52) come from the poles
at z7,=0 and t,=0. The remaining contributions, which come from the contours in
the upper and lower half planes, can be brought to the form (C.53) by computing
the residues at ¢, = +i(1+¢2)""* and making the changes of variable t,= +is, in
the integrals over r, which remain. The asymptotic formula {(C.54) is obtained from
(C.53) via the saddle point method (the saddle point is at £ =0); the restrictions
Sao0285>0for [, . =1, . +1 and s, ¢25,>0 for /, .=/, . +1 are imposed
because the saddle point method breaks down due to a nearby pole when they are
violated. The cure for this breakdown is described in Wong [27, pp. 356-360] and
in Bleistein and Handelsman [32, pp. 380-387]. We omit the details of this cure
because (C.54) has been written only to obtain the qualitative behavior of
G ooty < iy fOr z,, large, which is dominated by an exp(—z, ) fall-off. This
exponential fall-off, which comes from the exponential factors in the explicit
expressions for the modified Bessel functions of half-integral order, persists in the
more complicated asymptotic formula which cures the breakdown.

The result of integrating (C.47) by parts with the aid of the preceding formulas is

MR

I/,ll';mj.m,‘,m,'.m;‘;p/‘,pj'
. * * - - U2pi 1
=yliti+? J dr, J dr, J dr, J dryr; =%
0 0 0 0

NG —2p 1 -1 B DR [ R
X (ry) 2 Gy (v v )

x2pyt/ k) » (Fas 53 T T)/Ory Or,. (C.63)

pll'72pl/+ l,m,;/,',m,‘;lj,mj:lj»v2p/f+l,mj‘,;n

It will now be shown that the only contribution of order v* to (C.63) comes from
the z%(z})* term in G{?,. The modified Bessel function terms in G{",, G\?,, and
G, peak sharply at cither r,=r, or r,=r}; the contribution of these terms can
be estimated by evaluating 3%p/0r, Or,, at the peak and integrating over the peak

with the aid of the formula

j de {2 1,2352(5) K,+Z a(e) [“aye K[Z »2(0) 1,;11,/22&)

=—(+1)z7'"'D, o(2). (C.64)
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The function D, , in (C.64) is defined (and described) in (3.40)—(3.43). Because the
sharply peaked terms from G{'), and G}, enter with a sign opposite to the sign of

the sharply peaked terms in G}f",b, there is a cancellation, with the result that the
contribution of these sharply peaked terms is of order v* instead of the v which
would be expected from estimating them by multiplying their value at the peak,
which is of order v2 by the width of the peak, which is of order v. The exp(—z,, ,)
exponential fall-off of G, _, _ , ., . which was deduced from (C.54) shows that
this term peaks sharply at (ra—r.)? 4 (r, —r,)*=0; estimating this term as the
value at the peak times the area of the peak shows that it makes a contribution of
order v* or higher. It follows that

Goj' ke &7y
Lo dimyomy mi mpy, p;

& o N ’
2 2p 4 2
=2v2j draj A S A U A
0 0

(JJ k. k) (Fas b3 ¥ 7o)+ O(v"), (C.65)

X ' . P .
01172p/+ 1, my ,m,r;l,,ml;l,‘72p,<+ l,mj‘;n

All but the O(v*) error estimate in (C.65) could be obtained by making the
approximation

’ ’

gla.lh(zus zb;Za’ Zh)zz L

(C.66)

in (C.47), ie., by approximating (T— E,+ W) ' by (—E,+ W) 1 It follows that
(3.20) is valid for j#,  for all / and /.

The derivation of (3.59) and (3.60) is similar. Only the j=j', k=k' terms
contribute. Carrying out the angular integrations over 0, «, ¢, ,, 0} x, and ¢; ,, and
the sum from —1 to 1 over m, yields the form (3.27), but with different radial
integrals M (%% . Only the /=1, p=1 term, which contains p{;5). ,(r, r') and an
analogue of pg{'of‘?(f'o;"(r, r') in which (V+Z, |r,—R,| ') appears, is needed. The

approximation p§ o, .(r, ) = pias . (0, 0)[1 = Z,(r+r')] is used for (3.59);

the cruder approximation p§ gt .(r, r') & p§otah. ,(0, 0) and its analogue are used

for (3.60) and for the (V+ Z, Jr,—R,|™") term in (3.59). The radial integrations
are then performed with the aid of the integration formulas

[ an [ dn ] dnglen ) ngm ) =402)-2 (C67)
0 0 0
J‘ ) dz, _[ dzzj. dzyg(zy, Zz)z§g1(zza z3)=2, (C.68)
0 0 0
J’V d-’-’lf dzzJ- dzyz,g(zy, 2:) 2, 81(22, 23) = 2, (C.69)
0 0 0

2

A p e ko o a0 n
J. dzlJ dzzf dz}j dz4g1(21>22)22g1('—72a23)z3g1(23,24)=2—‘g‘~ (C.70)
0 0 0 0
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The changes of variables described following (3.55) in the text are helpful in the

derivation of some of these integration formulas.

APPENDIX D: MATRIX ELEMENT INTEGRALS

We begin by listing, in a very explicit notation, three very general matrix element
integral formulas:

(0,2, 0, 0 al x* |, 25, ', o, ad

o .
=f h(o, z,, o', a, a; x) x*h(a’, zg, &', o, a; x) dx
0

aZetr— 21'7).+I(

_ zo— 1) (zh— 1)" T(A+2a' + 1)

I(a+1)
1 1
XxF,| A+20'+1, —0, —a’,a+ 1,0+ 1; i (D.1)
1—z4 1—2
.0, ,
<0-5203 a,,a,ale_'|O',Z€),a,a,a>
ox
* I3 A a ' 7 ’
=J hlo, zo, 2, o, a; x) x* | — h(a', zp, o, o, a; x) | dx
0 ox
@ T A2z 1) (20— 1) (A +2a) (, 6)
= 5 .4 +y'—
T (a+1) dy
, 1 1, ,
XF| A+2a, —0, —0',a+ 1, a+1; % —(zita
1 _ZO y=1/(1 7:6) 2
. , 1 1
XFy | A4+20'+1, —0, —0',a+ 1,0+ 1; Nt B (D.2)
1—-zy 1—2z4

~

¢ .
(@, zy, &', %, al = x* Fe lo', 2o, &', &, @y

- _J [_h(“’ 2o, ', 0 4; X)] x* I:"— h(a', zy, &', &, a; x)] dx
o |LOx Ox

a2 A3z 1) (2 — 1) T+ 20 — 1)
hta —1
I+ 1) {“( +o'—1)

1 1
xF2<)~+20c’—l,—a,—a',fx+l,o¢+1;———, )

1—=z

’
o 1—20

A+ 20 ) A+ 2a — 1)
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1 1 1
X[ZF2</1+20:’+1, —a, —o,a+1l,a+1;—— ——>

1—z5" 1 -2z

1 1 1
—§F2<,{+2a’,—a,—o”,a+1,a+1;—-— )

b ’
l—z4 1=z

06 Fy(A+20 +1,—a+ 1, —a' + La+ La+ 1;1/(1 — z5), 1/(1 -zg))]}
(1 —zo)(1 — zo)(a + 1)? '

(D.3)

Here F, is one of the hypergeometric functions of two variables introduced by
Appell, which can be defined either by the integral representation [14, p. 230,

Eq. (2)]
I'(y) I(y')
npyrg)yre-prio-4g)
1 ' B—1 8 — 1y, \i—B~1
xJ‘Oduj dvu” v (1 —u)

[

Fylo, B, .7, 75 %, y)=

x{1—0) 11l —ux—vy) % (D.4)
or by the series expansion [14, p. 224, Eq. (7)]

A v v @i n B B s
Fz(% ﬂ9 ﬁ’ /,V 3 X y)—mgo HZ:O ('}))m (y’),,m!n! X y > (DS)

which converges for (x| + [y| < 1.
The formulas (D.1}-(D.3) are obtained by inserting the integral representation

1
exp(zt) 1°~ (1 —1)° =L df, (D.6)

0

Fila;c;z)= fte) f

I(a) I'(c—a)

for the confluent hypergeometric function | F,[ —o; a+ 1; ax/(1 — z,)] which appears
in the definition (5.25) of the basis functions h(o, zy, o', «, @; x). The integral
representation (D.6) is subject to the condition Re(c) > Re(a) > 0, but this restriction
can normally be removed by analytic continuation after formulas for the matrix
element integrals have been obtained.

Numerical evaluation of the Appell function F, which appears in (D.1)-(D.3) is
inconvenient except in special cases where it can be expressed in terms of ordinary
hypergeometric functions ,F, [14, Chap. II; 15, Chap. 1], which are easy to
calculate, or in terms of elementary functions. The key is the formula [14, p. 238,

Eq. (3)]
Fyo, B, B, o, 25 x, )

VB . S
=(1—-x)""(1-y) ﬁan[ﬁ,ﬁ,l,(l_x)(l_yJ, (D.7)
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which shows that we want to obtain Appell functions F, in which the first, fourth,
and fifth parameters are equal. This can be achieved by exploiting the freedom to
choose a, and by using the following differentiation and “step-down” formulas to
obtain Appell functions F, for which the reduction (D.7) can be used:

é
y —a; Fz(a, ﬁa ﬂ/’ o, a5 X, _V)

=pyFy(a, B, f+ 1L 4, 05 x, p)
+a BB xyFya+ 1, B+ 1, + La+ 1, a+1;x, ), (D.8)
Fylo+2, B8, B, a+ 1, a+1;x,p)
=(a+1)" "ByFa+ 1,8 8 +La+l,a+1;x,y)
+[Fla+ 1,8, 0+ La+1;xp)
+2(a+1) BB xyFa+2, B+ 1,0+ La+2,a+2;x,y)]
+(x+1) P PxFya+ 1L, B+ 1, B a+ 1, a+ 15 x, ). (D.9)

The “step-down” formula (ID.9) can be used repeatedly to reduce the first parameter
in F, by more than one unit. “Step-down” formulas for the derivative can be
obtained by differentiating (D.9) and using (D.8) in the result. The hypergeometric
function , F(a, b; c; z) can be efficiently evaluated for all real z by using the trans-
formation theory for the hypergeometric {unction to reduce the problem to the
problem of evaluating ,F,(a’, b’; ¢’; w) for |w| <34, which can be done via rapidly
convergent series in powers of w. The transformations are: w=1/(1 —z) for z < —1,
w=zf(z—1)for —1<z< -5, w=1—-zfori<z<l,w=1-z""for1<z<2, and
w=1/z for z> 2.

Matrix element formulas in which either or both of the functions 4 are replaced
by a basis function £{*>*(a; x) can be obtained by recognizing that the functions
£ *)(a; x) are special cases of the functions A:

(__l)kk!aa+l

hik,0,a,a a;x)= haatl)

& 0(g; x). (D.10)

For example, matrix elements in which A(a, z,, o', a, a; x) is replaced by ¢~ *(a; x)
are obtained from (D.1)-(D.3) by first continuing analytically in ¢ to o=k to
obtain an Appell function F, in which the sum over m is finite because the
Pochhammer symbol ( —k),, is O for m >k, and then letting z, — 0.

The use of these matrix element formulas can be understood by considering the
hydrogenic states of angular momentum /. For such states, the choice ' =7+ 1 gets
the small r behavior right (a factor of r' comes from the wave function, and a factor
of r from the r?dr part of the volume element). The Gram matrix elements
are obtained from (D.l) with 1=0, in which case the first parameter of the Appell
function F, is A+2a'+1=2/+3, which imposes the restriction a«<2/+2 if a
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reduction of the F, to a ,F, via (ID.7) and (D.9) is to be achieved. The matrix
elements of the Coulomb potential are obtained from (D.1) with A = — 1, with the
condition a<2/+ 1 for reduction of the F, to a ,F,. The kinetic energy matrix
elements are obtained from (D.1) with 4= —2 and (D.3) with A =0, which would
appear to give the condition a <2l However, the contribution from (D.1) cancels
against the first term on the right hand-side of (D.3) when ' =/+ 1, leading again
to the condition a < 2/+ 1 for reduction of the F, to a , F,. The condition a < 2/+ 1
can be understood by recognizing that it is also the condition for the Gram matrix,
the matrix of the Coulomb potential, and the kinetic energy matrix to be band
matrices when the basis £{*"*)(a; x) is used. When these matrices are band matrices,
the matrix elements with respect to the functions 4 can be calculated by expanding
the functions 4 in the £{*" *)(a; x) basis. Matrix elements between an 4 function and
a basis function &{***(a; x) then consist of a finite number of terms, and matrix
elements between two h functions are singly infinite sums which can be evaluated
by recognizing that they are the linear combinations of hypergeometric functions
which are obtained by using (D.1}-(D.3) and (D.7)-(D.9).
The use of these functions A for helium is similar. One uses the functions

Ek,.kg,k,z(al, a,a13;491, 42, 912)

= CL?'O)(‘H 140 éi(; Ma,y; q,) f&o)(alz; q12)s (D.11)

as the fundamental basis, where ¢,, ¢g,, and ¢,, are the perimetric coordinates

g = —r+ry+r;, (D.12)
g>=r, —ry+ry, (D.13)
qua=r +ry—ri. (D.14)

Auxiliary basis functions

H(a, zq, 0, a,a;ry, ry)=h(o, zo, o', 0, a; ry) Y(0, ra, r5)

+(r,,0,r) ha, zq, &', o, a; ry), (D.15)
where Y(r,,r,, r;2) is a helium S-state wave function, can be used to handle
the second short length scale which arises at large W without encountering
anything worse than a ,F; in the matrix element evaluations if y(r,, r,,r;;) is
approximated by a finite linear combination of the fundamental basis functions
k. kn{@1, @3, 135 44, 42, q,,). This is still true if auxiliary basis functions

H'(a', 25, a", o", a;ry, 1) = (o', 2o, &, &y a; ry) &0 a's ry)
+E0Y%a'; r) h(o, 2y, 2", ", a;ry)  (D.16)

are inciuded in the linear combination which approximates y(r,, r,, r;,) to handle
the long length scale associated with loosely bound outer electrons in excited states.
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