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We present a full dimensional quantum mechanical treatment of collisions between two H2

molecules over a wide range of energies. Elastic and state-to-state inelastic cross sections for
ortho-H2 + para-H2 and ortho-H2 + ortho-H2 collisions have been computed for different initial
rovibrational levels of the molecules. For rovibrationally excited molecules, it has been found that
state-to-state transitions are highly specific. Inelastic collisions that conserve the total rotational an-
gular momentum of the diatoms and that involve small changes in the internal energy are found
to be highly efficient. The effectiveness of these quasiresonant processes increases with decreasing
collision energy and they become highly state-selective at ultracold temperatures. They are found to
be more dominant for rotational energy exchange than for vibrational transitions. For non-reactive
collisions between ortho- and para-H2 molecules for which rotational energy exchange is forbidden,
the quasiresonant mechanism involves a purely vibrational energy transfer albeit with less efficiency.
When inelastic collisions are dominated by a quasiresonant transition calculations using a reduced
basis set involving only the quasiresonant channels yield nearly identical results as the full basis set
calculation leading to dramatic savings in computational cost. © 2011 American Institute of Physics.
[doi:10.1063/1.3595134]

I. INTRODUCTION

Ever since the first creation of Bose-Einstein condensates
(BECs) of alkali metal atoms in 1995 (Ref. 1) experimental
and theoretical studies of cold and ultracold molecules have
become a topic of intense activity. While direct laser cooling
of molecules has proven to be difficult due to their complex
internal level structure, photoassociation of ultracold atoms2

and methods based on Stark deceleration3 and buffer gas
slowing4 have enabled the possibility of cooling and trapping
a wide variety of molecular species. Novel techniques,
such as the Feshbach resonance method,5 have enabled the
creation of molecular BECs and paved the way for possible
control of chemical reaction pathways in ultracold dilute
gases.6 All these efforts have led to much interest in atomic
and molecular collisions at cold and ultracold temperatures.
Recent calculations7–10 and experiments11–14 on alkali metal
systems have indicated that electric and magnetic fields, and
optical lattices can be used to tune and modify chemical
reaction rates at ultracold temperatures. Electric and magnetic
fields and optical lattices can also be used to control interac-
tion and spatial alignment of polar molecules, and application
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of these techniques to quantum computing and quantum
information science is actively being pursued.15–18

The large de Broglie wavelengths characteristic of ultra-
cold collisions lead to interesting phenomena and quantum
threshold effects that are absent in thermal energy collisions.
Elastic (EL) and inelastic (IN) cross sections may show res-
onances corresponding to decay of quasibound levels of the
interaction potential.19, 20 The long collision times in cold col-
lisions can quite often exceed the molecular rotational period
and the energy exchange among the different degrees of free-
dom can be more efficient for selected transitions.21–23 Highly
efficient and selective quasiresonant energy transfer mecha-
nisms have been identified in atom-diatom and diatom-diatom
collisions, and it has been found that these processes become
more dominant at small incident energies. Such quasiresonant
processes have been the topic of a number of studies on vibra-
tional and rotational transitions in atom-diatom systems21, 22

and more recently in diatom-diatom collisions.23

While current research on cold and ultracold molecules
is motivated in part by applications in areas, such as quan-
tum control of atomic and molecular motion, quantum com-
puting, coherent chemistry, and high resolution spectroscopy,
cold molecules also provide a unique opportunity to inves-
tigate molecular collisions and mechanisms of energy trans-
fer in an extremely important but rather less explored regime
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that lies between the ultracold (<mK) and temperatures typi-
cally accessible in supersonic expansion (∼2–50 K). The in-
teraction potential between many neutral molecules exhibits a
van der Waals well that is typically about 10-100 K deep. In
many cases, the well supports bound and quasibound levels
that are held by a fraction of a Kelvin to tens of Kelvin. At
collision energies that lie in the mK to values comparable to
the magnitude of the van der Waals interaction potential, scat-
tering cross sections often exhibit sharp features that are sig-
natures of quasibound states of the van der Waals potential.
They may occur from a combination of shape and Feshbach
resonances and can significantly modify the probabilities for
vibrational and rotational transitions at low temperatures. The
importance of orbiting resonances in molecular collisions in
this energy regime has been the topic of a recent spotlight
article24 and such studies offer a sensitive probe to test the
accuracies of potential energy surfaces(PESs).

An accurate calculation of low temperature rate coef-
ficients for molecular collisions should include an accurate
treatment of scattering dynamics in this regime. This is par-
ticularly important for processes relevant to astrophysical en-
vironments, where temperatures as low as 3 K are possible.
Moreover, to determine thermally averaged rate coefficients
at temperatures near 1 K, cross sections at energies as low as
a few mK may be needed in evaluating the integral over the
Boltzmann distribution.

Until recently, most theoretical studies of cold molecu-
lar collisions have focused on atom-diatom systems. While
such calculations can be routinely performed for collisions of
rare-gas atoms with light molecules, they become computa-
tionally challenging for systems involving heavy diatomics,
open shell molecules, and systems with rearrangement chan-
nels where reactive scattering is present.25 Diatom-diatom
collisions are also challenging due to their increased number
of asymptotic channels and higher dimensionality. Because
H2-H2 is the simplest neutral diatom-diatom system, it has
been used as a benchmark to compute interaction potentials
for tetratomic systems and also as a test case for develop-
ing reliable quantum scattering formalisms for diatom-diatom
collisions. Given the importance of molecular hydrogen in the
interstellar medium, H2-H2 collisions have also been the topic
of a large number of theoretical calculations of state-resolved
cross sections and rate coefficients.26–31 These calculations
have largely been carried out at elevated temperatures. Unique
aspects of collisions at low energies, or collisions where the
vibrational coordinates of both H2 molecules are explicitly in-
cluded, have not been considered until fairly recently.

Early studies of the H2-H2 PES were carried out within
the rigid rotor approximation, in which the vibrational motion
of each H2 is kept frozen. As early as 1975, Green investigated
pure rotational transitions in H2-H2 collisions by quantum
close-coupling scattering calculations.32 He compared his
results with calculations employing the effective potential
approximation and also tested the accuracy of different
ab initio potential energy surfaces.33, 34 Forrey35 reported re-
sults of rotational transitions in para-H2 + para-H2 collisions
at cold and thermal energies using the rigid rotor PES of
Zarur and Rabitz.36 Maté et al.37 carried out measurements of
rotational excitation in collisions between two ground state

para-H2 molecules and reported rate coefficients for tem-
peratures between 2 and 110 K. They found generally good
agreement between their measured data and results of their
own close-coupling calculations using the rigid rotor H2-H2

PES of Diep and Johnson (DJ).38 Lee et al.39 investigated
rotational energy transfer in collisions between two para-H2

molecules using the DJ and a newer full-dimensional PES
calculated by Boothroyd, Martin, Keogh, and Peterson
(BMKP).40 Pogrebnya and Clary41 and Pogrebnya et al.42

employed the BMKP and the Schwenke PES (Ref. 43)
to compute vibrational relaxation in collisions between
para-H2 within the centrifugal-decoupling or coupled-states
(CS) approximation. They also reported rate coefficients
for ortho-H2 + para-H2 collisions at thermal energies.
Quéméner et al.23 and Quéméner and Balakrishnan44

reported results on the BMKP PES for rotational and vi-
brational transitions in para-H2 at ultracold and thermal
energies. In these calculations, all internal degrees of free-
dom involved were treated quantum mechanically, and no
angular momentum decoupling approximation was invoked.
Recently, Hinde reported a full-dimensional PES for the
H2-H2 system,45 that accurately reproduced energy levels of
H2-D2 and D2-D2 van der Waals complexes. Within the same
formalism of Ref. 23, Balakrishnan et al.46 presented rovi-
brational relaxation rate coefficients for para-H2-para-H2

collisions on the Hinde PES, and found that it yields vibra-
tional relaxation rate coefficients for H2(v = 1) in collisions
with H2(v = 0) in close agreement with experimental data.
Indeed, the agreement was found to be better than any
previous calculations of vibrational relaxation of H2(v = 1)
by collisions with H2(v = 0).

All of the studies described above have used the so-
lution of the time-independent Schrödinger equation. Time-
dependent approaches have also been successfully employed
in describing H2-H2 collisions.47, 48 Lin and Guo49 computed
rotational excitation cross sections in collisions between two
ground state para-H2 molecules using two different full di-
mensional PESs, the BMKP surface and that of Aguado
et al.50 They employed a wave packet approach based on
the Chebyshev polynomial expansion of the evolution oper-
ator and within the CS approximation. Later, they extended
their work to rovibrational transitions and reported rate co-
efficients for vibrational relaxation of H2(v = 1) by colli-
sions with H2(v = 0).51 Using the multiconfiguration time-
dependent Hartree (MCTDH) algorithm, Gatti et al.52 and
Otto et al.47, 48 reported rotational excitation cross sections
for para-H2+para-H2 collisions employing the BMKP PES.
Panda et al.53 subsequently extended these calculations to
rovibrational transitions in ortho-para collisions.

While there is an extensive literature on H2-H2 collisions
using different PESs and dynamical approximations, with
a few exceptions, the majority of studies have focused
on para-H2 molecules in the thermal regime. Data on
ortho-H2+ortho-H2 collisions and ortho-para collisions are
relatively sparse and most of these studies have either used the
rigid rotor approximation or the coupled states approximation
for the full-dimensional calculations.41, 51 While the calcu-
lations of Flower31 used the full close-coupling method, his
rate coefficient calculations were restricted to temperatures of
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300 K and 500 K. Furthermore, Flower adopted an asymmet-
ric basis set for the target and perturber molecule with v = 0,
j = (1, 3, 5, 7, 9, 11), and v = 1, j = (1, 3, 5, 7) for the
target H2, while only the v = 0 with j = (1, 3, 5) levels have
been included for the perturber H2 molecule. This restriction
is lifted in the present work for ortho-ortho collisions and
we use identical basis sets for both molecules. In addition,
we present results for ortho-ortho and ortho-para collisions
in the cold and ultra-cold regimes, and for both cases we use
the full close-coupling approach with no angular momentum
decoupling approximations. The recently reported high
accuracy H2-H2 PES of Hinde is employed. We show that
rotational and vibrational relaxation rate coefficients are
strongly influenced by energy and angular momentum gaps.
In accordance with our previous findings on para-H2 colli-
sions, rovibrational transitions that conserve the total internal
rotational angular momentum and that nearly conserve the
internal energy are dominant while others are suppressed. In
collisions involving initial states for which internal energy
and internal rotational angular momentum gaps cannot be
simultaneously minimized, vibrational relaxation is found to
be driven by the angular dependence of the interaction poten-
tial. We show that rate coefficients for vibrational relaxation
of ortho-H2(v = 1) in collisions with ground vibrational
state ortho-H2 molecules obtained from our calculations
are generally in reasonable agreement with experimental
data. The agreement is less satisfactory compared to that
of para-H2 case,46 but still better than previous calculations
using BMKP or BMKPE PESs. Unfortunately, the only
available measurement below a temperature of 300 K is that
of Audibert et al. which was performed in 1975. We believe
that for benchmarking the results of full close-coupling calcu-
lations obtained using highly accurate interaction potentials,
modern measurements would be extremely valuable and we
hope the present study will motivate such experiments.

II. THEORY

We present here a brief account of the scattering for-
malism of two 1� diatomic molecules. A more detailed dis-
cussion can be found in the original papers of Takayanagi,54

Green,32 Alexander and DePristo,55 and Zarur and Rabitz.36

As in our previous works,23, 44 we use the close cou-
pling scheme in the total angular momentum representation
of Arthurs and Dalgarno56 to solve the time-independent
Schrödinger equation. Atomic units are used throughout, un-
less otherwise noted.

The Hamiltonian of the system is composed of the
Hamiltonians for the two diatoms, with their kinetic energy
term T̂ (r ) and potential energy v̂(�r ), combined with the ki-
netic energy for the relative motion, T̂ (R), and the four-
particle interaction potential U (�r1, �r2, �R),

Ĥ = T̂ ( �R) + T̂1(�r1) + T̂2(�r2)

+v̂1(�r1) + v̂2(�r2) + U (�r1, �r2, �R), (1)

where (see Fig. 1), �r1 and �r2 are the vectors joining the two
nuclei in each diatomic molecule, and �R represents the vec-
tor joining the center of masses of the diatomic pairs. The

FIG. 1. Jacobi coordinates for the tetratomic system.

spatial orientation of these vectors is denoted by angles r̂1, r̂2,
and R̂. The angular dependence of the interaction potential is
expanded in spherical harmonics,

U (�r1, �r2, �R) =
∑

λ

Aλ(r1, r2, R)Yλ(r̂1, r̂2, R̂), (2)

where

Yλ(r̂1, r̂2, R̂) =
∑
mλ

〈λ1mλ1λ2mλ2 |λ12mλ12〉

×Yλ1,mλ1
(r̂1)Yλ2,mλ2

(r̂2)Y ∗
λ12,mλ12

(R̂), (3)

with λ ≡ λ1λ2λ12 and mλ ≡ mλ1 mλ2 mλ12 . The quantity in an-
gular brackets, 〈λ1mλ1λ2mλ2 |λ12mλ12〉, represents a Clebsch-
Gordon coefficient. The total wave function of the system is
expanded in a basis set of the combined asymptotic rovibra-
tional wave functions of the two molecules,

�(�r1, �r2, R̂) = 1

R

∑
v jl J M

F J MεI
v jl (R)�J MεI

v jl (�r1, �r2, R̂), (4)

where J is the total angular momentum quantum number
(which is conserved in the collision) and M its projection
on the space fixed z axis. Vibrational and rotational quantum
numbers of the two molecules are represented by v ≡ v1v2

and j ≡ j1 j2 j12, where j12 is the total rotational angular mo-
mentum quantum number of the two molecules which takes
values from | j1 − j2| to j1 + j2. The index εI = ±1 indicates
the parity of the wave function under spatial inversion, and it
is given by εI = (−1)J+ j1+ j2+l . The asymptotic rovibrational
wave functions are given by

�
J MεI
v jl (�r1, �r2, R̂) = χv j1 j2 (r1, r2)〈r̂1, r̂2, R̂| j1 j2 j12l J M〉,

where χv j1 j2 (r1, r2) ≡ χv1 j1 (r1)χv2 j2 (r2) represents the vibra-
tional wave functions of the two molecules. The rotational
wave function is given by

〈r̂1, r̂2, R̂| j1 j2 j12l J M〉 =
∑
m j ml

〈 j1m j1 j2m j2 | j12m j12〉

× 〈 j12m j12lml |J M〉
×Y j1m j1

(r̂1)Y j2m j2
(r̂2)Ylml (R̂),
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where m j ≡ m j1 m j2 m j12 . The Clebsch-Gordan coefficients
arise from the coupling of j1 and j2 to yield j12 and from the
subsequent coupling of j12 and l to yield J . The form of the
wave function given by Eq. (4) is appropriate for collisions
involving distinguishable molecules, e.g., between ortho-H2

and para-H2. For indistinguishable molecules, as in ortho-
H2+ortho-H2 or para-H2+para-H2 collisions, properly sym-
metrized exchange-permutation invariant functions need to be
constructed,

�
J MεI εP
v jl (�r1, �r2, R̂)

= �v j1 j2

[
�

J MεI
v jl + εP (−1) j1+ j2+ j12+l�

J MεI

v̄ j̄ l

]
,

where �v j1 j2 = [2(1 + δv1v2δ j1 j2 )]−1/2, v̄ = v2v1, j̄ = j2 j1 j12,
and εP = ±1.

Substitution of Eq. (4) into the time-independent
Schrödinger equation leads to a set of coupled equations

{
− 1

2μ

d2

d R2
+ l(l + 1)

2μR2
+ εv j − E

}
F J MεI (εP )

v jl (R)

+
∑
v ′ j ′l ′

U J MεI (εP )
v jl,v ′ j ′l ′ (R)F J MεI (εP )

v ′ j ′l ′ (R) = 0, (5)

in which μ is the reduced mass of the molecule-molecule sys-
tem, and the collision energy for each channel is given by
the difference between the total energy E and the thresh-
old energy εv j of that channel. The superscripts denote the
good quantum numbers, and the molecule permutation sym-
metry εP is present only if the molecules are indistinguish-
able. U J MεI (εP )

v jl,v ′ j ′l ′ (R) represents the matrix elements of the
interaction potential between the asymptotic rovibrational
wave functions �

J MεI εP
v jl (�r1, �r2, R̂). Explicit expressions for

U J MεI (εP )
v jl,v ′ j ′l ′ (R) for both distinguishable and indistinguishable

cases are given in Ref. 44.
At sufficiently large values of R asymptotic boundary

conditions are applied to extract the scattering matrix S from
which state-to-state cross sections are computed. In the case
of indistinguishable molecules, the state-to-state cross sec-
tions need to be statistically weighted by the exchange sym-
metry terms in order to correctly account for the nuclear-spin
permutation,

σv1 j1v2 j2→v ′
1 j ′

1v ′
2 j ′

2
(Ec) = W +σ εP =+1 + W −σ εP =−1,

where

σ εP = π (1 + δv1v2δ j1 j2 )(1 + δv ′
1v ′

2
δ j ′

1 j ′
2
)

(2 j1 + 1)(2 j2 + 1)2μEc

×
∑

j12 j ′
12ll ′ JεI

(2J + 1)|δv1v2δv ′
1v ′

2
δ j1 j2δ j ′

1 j ′
2

−S JεI εP

v1 j1v2 j2 j12,v ′
1 j ′

1v ′
2 j ′

2 j ′
12

(Ec)|2. (6)

The collision energy Ec is specified relative to the channel
energy and it is given by Ec = E − εv1 j1 − εv2 j2 . For colli-
sions between para-H2 molecules, W + = 1 and W− = 0 and
for ortho-H2 collisions, W + = 2/3 and W− = 1/3. For the
distinguishable case, the state-to-state cross section is given

by the usual formula

σv1 j1v2 j2→v ′
1 j ′

1v ′
2 j ′

2
(Ec) = π

(2 j1 + 1)(2 j2 + 1)2μEc

×
∑

j12 j ′
12ll ′ JεI

(2J + 1)|δv1v2δv ′
1v ′

2
δ j1 j2δ j ′

1 j ′
2

−S JεI

v1 j1v2 j2 j12,v ′
1 j ′

1v ′
2 j ′

2 j ′
12

(Ec)|2. (7)

Calculations are carried out separately for the two inversion
parities and the final cross sections are obtained by adding the
two contributions.

III. RESULTS

A. Computational details

In our previous studies we have focused on collision
dynamics of two para-H2 molecules treating them as in-
distinguishable molecules. For para-H2 only one exchange
symmetry contributes, and the calculations are generally
computationally less demanding than the ortho-H2 case for
which both exchange symmetries need to be included. For
the ortho-para case no exchange symmetries are present and
the full distinguishable basis must be employed. This leads
to a significantly larger basis set making the calculations
computationally more challenging.

Here, we present collision dynamics of two indistinguish-
able ortho-H2 molecules and also collisions of ortho-H2 and
para-H2 molecules. The calculations were performed using
a modified version of the quantum scattering code TwoBC
(Ref. 57) based on the formalism described in Sec. II. In the
case of indistinguishable molecules, the rovibrational quan-
tum numbers that define a state |v, j〉 obey the “well ordered
states classification,”32, 54, 55 in which v1 > v2 when v1 
=
v2, or j1 ≥ j2 when v1 = v2. This ordering scheme avoids
double-counting and equivalent molecular states are com-
bined into a single state: i.e., |v1, j1, v2, j2〉 ≡ |v2, j2, v1, j1〉.
In non-reactive scattering, in which permutation of the H-
atoms between the two H2 molecules does not occur, this rep-
resentation of the wave function is unique before and after the
collision.

The number of states included in the expansion of the
wave function has been determined based on a series of con-
vergence tests. The final basis set employed reflects a compro-
mise between accuracy and computational cost. The trunca-
tion of the basis set was guided by an analysis of the effective
potential,

V J
ef f (R) = εv j + U J MεI εP

v jl,v jl (R) + l(l + 1)

2μR2
. (8)

The first term is the energy of the combined molecular state
|v1, j1, v2, j2〉 obtained by adding the asymptotic energies of
|v1, j1〉 and |v2, j2〉. The second term is the diagonal element
of the diabatic potential energy coupling matrix and the third
term is the centrifugal potential for a given value of the orbital
angular momentum quantum number l. At large intermolec-
ular separations, the energies of the different channels that
correspond to the same combined molecular state (CMS) con-
verge to its asymptotic value. Table I lists energies of CMSs of
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TABLE I. Rovibrational energies of various combined molecular states of the two ortho-H2 molecules included
in the calculations. Energies are relative to the bottom of the H2 potential and the zero-point energy of the ortho-
ortho complex in this case is 4595.263 cm−1. Some of the channels that are excluded in the calculations by
imposing a cut-off energy are also shown.

v1 j1 v2 j2 εv j (cm−1) εv j (K) v1 j1 v2 j2 εv j (cm−1) εv j (K)

0 1 0 1 4595.263 6617.179 1 5 0 5 11910.837 17151.605
0 3 0 1 5182.011 7462.096 1 7 0 3 12249.645 17639.489
0 3 0 3 5768.759 8307.013 1 3 0 7 12375.392 17820.564
0 5 0 1 6216.196 8951.322 0 9 0 7 12544.120 18063.533
0 5 0 3 6802.944 9796.239 1 1 1 1 12905.617 18584.088
0 7 0 1 7662.828 11034.472 1 7 0 5 13283.830 19128.715
0 5 0 5 7837.129 11285.466 1 5 0 7 13357.469 19234.755
0 3 0 7 8249.576 11879.389 1 3 1 1 13463.004 19386.726
0 1 1 1 8750.440 12600.634 1 1 0 9 13631.732 19629.694
0 7 0 5 9283.761 13368.616 cut off
1 3 0 1 9307.827 13403.271 1 3 1 3 14020.392 20189.364
1 1 0 3 9337.188 13445.551 1 3 0 9 14189.120 20432.332
0 9 0 1 9476.555 13646.239 0 9 0 9 14357.848 20675.301
1 3 0 3 9894.576 14248.189 1 5 1 1 14445.081 20800.917
0 9 0 3 10063.304 14491.158 1 7 0 7 14730.461 21211.864
1 5 0 1 10289.904 14817.462 1 5 1 3 15002.468 21603.554
1 1 1 5 10371.373 14934.777 1 5 0 9 15171.196 21846.522
0 7 0 7 10730.393 15451.766 1 1 1 7 15818.073 22778.025
1 5 0 3 10876.652 15662.379 1 5 1 5 15984.545 23017.745
1 3 0 5 10928.760 15737.414 1 7 1 3 16375.461 23580.664
0 9 0 5 11097.488 15980.383 1 7 0 9 16544.189 23823.632
1 7 0 1 11662.896 16794.570 1 7 1 5 17357.537 24994.853
1 1 0 7 11818.005 17017.927 1 7 1 7 18730.530 26971.963

two ortho-H2 molecules that are included in the calculations
and those of nearby closed channels that are excluded.

An energy cut-off of 14 000 cm−1, ∼20 140 K, was intro-
duced to limit the number of states in the basis set. Without
this limit calculations would have become prohibitively ex-
pensive for high energies and high J values. The final basis
set for ortho-ortho calculations included jmax = 9 for v = 0
and jmax = 7 for v = 1 for both molecules. This means that
for the ground vibrational level, we included rotational lev-
els j = 1, 3, 5, 7, and 9, and for the first excited vibrational
level, rotational levels j = 1, 3, 5, and 7. For the initial states
considered in this study, this choice of the basis set is found
to yield results converged to better than 5%. For the ortho-
para case, an equivalent basis set was adopted for ortho-H2,
while for the para counterpart we used v = 0, jmax = 8, and
for v = 1, jmax = 6 based on previous calculations of para-
H2-para-H2 collisions.46 The basis set includes 32 combined
molecular states for the ortho-ortho case and 70 for the ortho-
para case.

The log-derivative matrix propagation method of
Johnson58 and Manolopoulos59 was used to integrate the cou-
pled equations (5) from Rmin = 3 a0 to Rmax = 53 a0 at which
asymptotic boundary conditions are applied to evaluate the
scattering matrix. To keep the computational cost reasonable,
the ortho-para results were obtained for collision energies
below 100 K which required J up to 10 for yielding
converged cross sections. The ortho-ortho calculations for
vibrational self-relaxation of H2(v = 1) included collision
energies up to 10 000 K and J values up to 85. As an
example of computational cost, it took about 1120 h of CPU

time in an AMD Opteron cluster for the ortho-para case
1001 and for positive inversion parity. For the ortho-ortho
case 1103 and for positive inversion parity it took 304
h for energies up to 100 K and 3500 h from 100 K to
10 000 K. Overall, the production calculations required
over 50 000 CPU h in Opteron clusters and quad core Mac
OSX workstations. The high energy range of the ortho-
para calculations involved nearly 3000 coupled-channel
equations.

For ortho-H2 collisions, three different initial states
have been chosen: H2(v = 1, j = 1) + H2(v = 0, j = 1),
H2(v = 1, j = 1) + H2(v = 0, j = 3), and H2(v = 1, j = 3)
+ H2(v = 0, j = 1), respectively, 1101, 1103, and 1301. For
the ortho-para case, we focused on 1001 and 1201. Figure 2
displays the elastic cross sections for all five initial states at
collision energies ranging from 0.1 mK to 100 K. Except
for the resonant features, which will be addressed in more
detail later on, the cross sections depict similar energy de-
pendence and comparable values in the entire energy range
spanning six orders of magnitude. This is in agreement with
our previous study of para-H2 collisions, where it has been
shown that the elastic cross sections are largely insensitive to
the initial rovibrational levels of the two H2 molecules ex-
cept when quantum statistics effects are present.23 The zero-
energy limits of the cross sections are 374.7×10−16 cm2

for 1101, 370.9×10−16 cm2 for 1103, 369.0×10−16 cm2 for
1301, 386.7×10−16 cm2 for 1001, and 371.9×10−16 cm2 for
1201.

In our previous study of para-H2 collisions, it has been
found that inelastic collisions that conserve the total ro-
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FIG. 2. Elastic cross sections for initial combined molecular states 1001,
1101, 1103, 1201, and 1301 as functions of the incident kinetic energy.

tational angular momentum and that nearly conserve the
internal energy of the two molecules are highly efficient and
specific.23 This has been analyzed in detail for the initial state
1002, which preferentially leads to the 1200 final state. The
energy transfer occurs primarily through a swapping of rota-
tional quantum numbers between the two molecules. Here, we
will examine if this persists for ortho-H2 collisions and how it
is modified for the ortho-para case for which rotational energy
exchange is forbidden for inelastic collisions.

B. Ortho-ortho calculations

Figure 3 shows state-to-state rovibrational transition
cross sections for 1101 collisions. Although exchange of rota-
tional quantum number between the two molecules is allowed
in this case, it corresponds to an elastic process because
the molecules are indistinguishable. The main contribution
to the total inelastic cross section arises from the process
1101 → 0505, which has the second least energy gap, of
about 1314 K. Pure vibrational relaxation of the v = 1
molecule is found to be the next dominant transition, even
though the energy gap for this transition is the largest among

10
-6

10
-4

10
-2

10
0

10
2

10
4

E
C

(K)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

S
ta

te
 t

o
 S

ta
te

 C
ro

s 
S

ec
ti

o
n
 (

1
0

-1
6

cm
2
)

IN
0505
0101
0301
0303
0503
0501
0703
0701
1103

FIG. 3. Total IN and state-to-state cross sections as functions of the incident
kinetic energy for H2(v = 1, j = 1) + H2(v = 0, j = 1) collisions.

TABLE II. Percentage contributions of selected final states to the total in-
elastic cross section for the 1101 initial state from calculations assuming the
molecules to be distinguishable (upper panel) and indistinguishable (lower
panel).

Final CMS 10−6 K 10−3 K 1 K 10 K 100 K

Distinguishable
01-11 99.66 99.99 99.99 99.99 99.99
05-05 0.0717 0.0023 4.3×10−6 3×10−5 3.12×10−4

01-01 0.0216 0.0007 1.6×10−6 7.13×10−6 5.98×10−5

Indistinguishable
01-11 . . . . . . . . . . . . . . .
05-05 45.24 45.34 46.74 63.72 55.74
01-01 16.5 16.54 18.47 22.53 22.33

all the exoergic inelastic transitions, 5978.34 K. Table II
presents the percentage contributions of selected inelastic
transitions to the total inelastic cross section at five different
collision energies, 10−6, 10−3, 1, 10, and 100 K. Interestingly,
when we treat these molecules as distinguishable, disregard-
ing the fact that they both have the same nuclear spin, it
is found that vibrational exchange becomes the dominant
inelastic transition. This can be explained by recalling that
when the molecules are treated as indistinguishable we
have |v1, j1, v2, j2〉 ≡ |v2, j2, v1, j1〉; therefore, vibrational
exchange is being incorporated into the elastic cross section.
Treating the molecules as distinguishable separates these two
channels and one can identify their individual contributions.
Furthermore, since the energy gap between the initial,
|1, 1, 0, 1〉, and final, |0, 1, 1, 1〉, states is zero, and the total
internal rotational angular momentum is conserved, it is
expected that this would be the dominant inelastic process.
Analogous to the quasiresonant rotation-rotation (QRRR)
transfer as in 1002 to 1200 case, this may be termed as
resonant vibration-vibration (RVV) transfer, for the process
is exactly resonant.

Elastic and total inelastic cross sections for the 1103 ini-
tial state are shown in the upper panel of Fig. 4. For ener-
gies below 10−2 K, the elastic cross section attains finite val-
ues while the inelastic cross section diverges inversely as the
incident velocity, in accordance with the Wigner threshold
laws.60 At incident collision energies below 10−4 K, the in-
elastic cross section exceeds the elastic cross section which
is also a consequence of Wigner’s threshold law. To demon-
strate the dominance of QRRR transition in this case, we dis-
play selected inelastic cross sections in the middle and bottom
panels of Fig. 4. The middle panel shows some rovibrational
transitions along with the total inelastic cross section. It is
seen that the main contribution to the inelastic process comes
from the 1103 → 1301 transition. This process involves the
exchange of two quanta of rotational energy between the two
hydrogen molecules and the least energy gap (42.24 K). Two
other transitions, with cross sections a few orders of mag-
nitude smaller than that of the dominant inelastic process,
correspond to 1103 → 1101 (pure rotational quenching) and
1103 → 0705. A comparative analysis of them reveals that
even though the energy gap is smaller, 76.86 K for the lat-
ter compared to 844.14 K of the former, minimization of in-
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FIG. 4. EL, total IN, and state-to-state cross sections as functions of the inci-
dent kinetic energy for 1103 collisions. Upper panel: Elastic and total inelas-
tic cross section; middle panel: Total inelastic and dominant inelastic cross
sections along with a few less prominent state-to-state cross sections; lower
panel: State-to-state cross sections that make negligible contributions to the
total inelastic cross section.

ternal angular momentum change dominates internal energy
conservation, suppressing an exponential-energy-gap-law-
type behavior seen for pure rotational transitions in sev-
eral atom-molecule systems.61 The lower panel of Fig. 4
depicts all the remaining state resolved inelastic cross sec-
tions, which make negligible contribution to the total in-
elastic cross section. Results show that depending on the
combination of initial rovibrational quantum numbers of the
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FIG. 5. Total IN and state-to-state cross sections as functions of the inci-
dent kinetic energy for H2(v = 1, j = 3) + H2(v = 0, j = 1) collisions. The
upper panel shows the total inelastic and some dominant state-to-state cross
sections while the lower panel shows the negligible contribution from many
inelastic channels.

colliding molecules, energy and angular momentum gaps dic-
tate the magnitude of state-to-state cross sections. The results
obtained by treating the molecules as distinguishable confirm
that the rotational exchange dominates all other inelastic pro-
cesses. In this case, vibrational exchange accounts for less
than 1% of the total inelastic cross section. This is not surpris-
ing because the interaction potential is more sensitive to the
orientation of the H2 molecules than the H-H bond distance.

Results for 1301 collisions are shown in Fig. 5. The up-
per panel displays the total inelastic and a few selected state-
to-state cross sections. The most interesting feature appears
to be the interplay among the two main inelastic channels,
1301 → 1101 and 1301 → 1103. As in the previous cases,
conservation of internal angular momentum (and to a lesser
extent, conservation of internal energy) seems to be what
drives the transitions. For energies below the opening of the
1103 channel (see Table I), the inelastic process is mostly
driven by the quenching of the rotationally excited molecule
leading to the 1101 product channel. At a collision energy
of about 42.24 K, at which the 1103 channel becomes ener-
getically open, the inelastic cross section becomes dominated
by the 1103 final state. Treating the molecules as distinguish-
able reveals that at an incident energy of 1 K vibrational and

Downloaded 07 Jun 2011 to 146.186.234.203. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



214303-8 Fonseca dos Santos et al. J. Chem. Phys. 134, 214303 (2011)

rotational exchange leading to 0113 has the largest contri-
bution (72.18%) while pure rotational quenching leading to
1101 contributes 27.5%. In both 1103 and 1301 collisions,
when the QRRR mechanism is present, vibrational relaxation
is about five orders of magnitude less efficient than the domi-
nant inelastic transition.

At energies above 100 K, a few more channels become
energetically open for all the ortho-ortho cases presented
here. Selected channels are shown in Figs. 3–5. The domi-
nant process for all cases is the rotational excitation of the H2

molecule in its vibrational ground state, the process that has
the smallest angular momentum gap among the newly open
channels.

1. Vibrational relaxation rate coefficients

Rate coefficients for vibrational relaxation of H2(v = 1)
were calculated for the ortho-ortho case by weighting the vi-
brational de-excitation rate coefficients of 1101, 1103, and
1301 according to31

R1→0(T ) =
∑

v ′
1 j ′

1v ′
2 j ′

2

n(v1 j1)n(v2 j2)

×R(v1 j1v2 j2 → v ′
1 j ′

1v ′
2 j ′

2) (9)

in which the sum runs over the final states and

n(v j) = (2 j + 1) exp[−εv j/kT ]∑
v j (2 j + 1) exp[−εv j/kT ]

, (10)

where k in the Boltzmann constant.
The vibrational relaxation rate coefficients are shown in

Fig. 6. The temperature range spans from 1 to 500 K, and the
state-to-state rate coefficients R(v1 j1v2 j2 → v ′

1 j ′
1v ′

2 j ′
2) were

obtained from the corresponding cross sections computed for
collision energies from 10−6 to 104 K for the 1101, 1103,
1301 initial CMSs. The upper panel of Fig. 6 displays the
vibrational de-excitation rate coefficients for the different
initial states, theoretical calculations of Pogrebnya and
Clary,41 as well as the experimental results of Audibert
et al.63 Pogrebnya and Clary used the BMKPE PES within
the CS approximation. Lin and Guo have reported rate
coefficients for ortho-ortho H2 collisions using the BMKP
PES within a time-dependent approach51 and have found that
their results are three to ten times larger than the experimental
data. Comparing our results against those of Pogrebnya
and Clary reinforces previous findings41, 46 that the less
anisotropic BMKPE PES yields results in better agreement
with experiment, and with the Hinde PES employed in our
calculations. The lower panel of Fig. 6 presents the thermal
averaged vibrational relaxation rate coefficients, R1→0(T ),
experimental results of Audibert et al.63 and theoretical
calculations of Flower.31 Flower’s calculations were carried
out on the H4 PES of Schwenke and with an asymmetric basis
set for the two H2 molecules as discussed earlier. We attribute
the difference between ours and Flower’s results to his choice
of truncated basis set and choice of PES. Our results are
higher than the experimental values for temperatures below
200 K, but they slightly underestimate the experimental data
at temperatures above 300 K. While inclusion of additional
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FIG. 6. Temperature dependence of calculated vibrational relaxation rate
constants (solid lines) for ortho-ortho H2 collisions. The upper panel shows
the initial state resolved rate coefficients for 1101, 1103, and 1301 together
with the available results of Pogrebnya et al.41 for the 1101 initial state
(triangles). The lower panel displays vibrational relaxation rate coefficients
averaged over a thermal population of rotational levels in v = 0 and v = 1
evaluated using Eq. (9). Experimental results of Audibert et al. (shown
in both panels)63 and theoretical results of Flower31 are also included for
comparison. The rate coefficients for the 1101, 1103, and 1301 initial states
in the upper panel, and the averaged vibrational relaxation rate coefficient in
the lower panel are provided as supplementary material, see Ref. 62.

rotational levels in the thermal averaging may improve the
agreement at higher temperatures, the discrepancy at lower
temperatures indicate that a re-evaluation of the experimen-
tal data and/or calculations using a more accurate H2-H2

potential are needed. As far as our theoretical results are
concerned, the only approximation is the truncation of the
basis set which results in less than 5% error.

C. Ortho-para calculations

Figure 7 presents the cross sections for 1201 collisions.
The upper panel displays the leading inelastic channels while
the middle panel shows the remaining state-to-state cross sec-
tions. The lower panel depicts partial cross sections for differ-
ent values of J and parities, εI = ±1, to identify the partial
wave contribution to the main resonance features in the cross
section. The upper panel shows that rotational de-excitation
of para-H2 leading to 1001 is the dominant inelastic pro-
cess in the entire energy range. Since an ortho-para transition
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FIG. 7. Inelastic cross sections as functions of the incident kinetic energy
for the 1201 collisions. Upper panel: total inelastic cross section and lead-
ing state-to-state cross sections; Middle panel: Cross sections for all other
inelastic channels (the legend follows the order of the cross section values
at 100 K); Bottom panel: Partial cross sections for different values of J that
contribute to the resonance peaks at 0.07 K, 1.2 K, and 18.3 K. The various
partial cross sections are labeled by JεI .

(nuclear spin interconversion) is not allowed, this process in-
volves minimum change in angular momentum. The energy
gap is 484.16 K. The second-most dominant inelastic transi-
tion is the exchange of a vibrational quantum between the two
H2 molecules leading to the final state, 0211. This lies about
16.95 K above the initial state, and the sharp rise in the cross
section at this value of the collision energy arises from the
opening of this channel. Although the process involves simul-
taneous exchange of a vibrational quantum between the two
molecules, it is quite efficient because of the small energy gap
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FIG. 8. Inelastic cross sections as functions of the incident kinetic energy for
1001 collisions. The legend follows the decreasing order of the cross section
values at 100 K.

and zero angular momentum change. The next leading inelas-
tic channel contributes less than 0.01% to the total inelastic
cross section. It involves both vibrational exchange and rota-
tional quenching of the para-H2 molecule yielding 0011 with
an energy gap of 492.67 K. All other inelastic channels make
negligible contributions to the total inelastic cross section as
shown in the middle panel of Fig. 7. Thus, even though many
final states are energetically allowed the total inelastic cross
section is dominated by a few channels that involve small en-
ergy and angular momentum gaps.

The state-to-state cross sections as a function of the in-
cident kinetic energy show resonant enhancement at energies
of about 0.07 K, 1.2 K, and 18.3 K. Since they are present in
all state-to-state cross sections it appears that they arise from
features in the entrance channel of the interaction potential.
The energy spacing between these resonances is very small
compared to the energy level separation between different
rovibrational levels of the H2 molecule. Also, the van der
Waals well depth of the H2 · · · H2 complex is about 57.0 K,
much smaller than the energy level separation between the
H2 rovibrational levels. Thus, we rule out the possibility of
Feshbach resonances at collision energies depicted in Fig. 7
and attribute the features to orbiting resonances. To identify
the partial wave contribution to the resonances we show in
the lower panel of Fig. 7 the J -resolved contributions to the
total inelastic cross section. Each curve is labeled by JεI .
The sharp feature at 0.07 K originates solely from l = 2 with
J = 2 and εI = −1. Interestingly, the resonance at 1.2 K and
the weak bump near 8 K, appear to include contributions from
several J values leading to much broader features compared
to the 0.07 K resonance. Using the notation (l, JεI ), the
1.2 K resonance is dominated by the d-wave scattering
partial waves (2,1+), (2,2–), (2,3+), (2,4–), and (2,5+),
while f -wave scattering from (3,0+), (3,1–), (3,2+), (3,3–),
and (3,4+) is primarily responsible for the 8 K feature. We
therefore attribute these features, and similar structures in
ortho-ortho scattering, to orbiting resonances. The resonance
at 18.3 K, however, is due to the opening of the 1102 channel.

In Fig. 8, we present inelastic cross sections for the initial
state 1001 as functions of the incident kinetic energy. It is seen
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that the total inelastic cross section is dominated by the final
state 0011. Since an ortho-para transition is not allowed, this
does not occur through a rotational exchange but through a vi-
brational transfer between the two molecules. We denote this
process as quasi-resonant vibration-vibration (QRVV) trans-
fer. The energy gap is only 8.5 K, the lowest possible in
H2+H2 collisions and it arises from the centrifugal distortion
of the vibrational levels v = 0 and 1 by the j = 1 rotational
level. Although the pure vibrational transition 1001 → 0001
also involves no change in the internal angular momentum,
it involves a large energy gap of about 6000 K making it
about three orders of magnitude less efficient than the near-
resonant 1001 to 0011 transition. All other inelastic chan-
nels combined contribute less than 0.01% to the total cross
section.

In a recent quantum mechanical study of H2-H2 colli-
sions using the MCTDH approach, Panda et al.53 have shown
that in ortho-para collisions, rotationally elastic transitions
are dominated by vibrational exchange as in 1001 to 0011.
Though the calculations of Panda et al. employed the BMKP
and BMKPE PESs the overall findings of their study are in
agreement with our results. Since they employed the time-
dependent wave packet approach, which is not robust for low
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FIG. 9. Comparison between cross sections obtained using the full basis set
and a reduced basis set for 1001 collisions. The reduced basis set included
only the quasiresonant channels. Upper panel: comparison between EL and
total IN cross sections; Lower panel: comparison between the dominant in-
elastic cross sections.

energy calculations, they focused their studies on collision en-
ergies above 0.1 eV (∼1200 K). Given the fact that the QRRR
and QVVV transitions become more dominant at low ener-
gies, the highly specific nature of these transitions shown here
are not apparent in their calculations, which concentrated pri-
marily on excitation collisions. To reduce computational ef-
fort they performed calculations for selected values of J and
used an interpolation scheme to evaluate cross sections for the
remaining J values.

We have also performed equivalent calculations for the
1001 case with an extremely reduced basis set, which in-
cludes solely the rovibrational states responsible the quasires-
onant transition. With this choice only four combined molec-
ular states were included (see Table I), namely: 0001, 0011,
1001, and 1011. As illustrated in Fig. 9, results of this calcu-
lation reproduce the full basis set results within 5% or less.
Also, no appreciable difference is seen between the elastic
cross section calculated with the two basis sets. The smaller
basis set leads to dramatic savings (nearly 99%) in computa-
tional effort. Our analysis shows that in cases where QRVV or
QRRR transitions are present, a very small basis set consisting
of only the quasiresonant channels can yield accurate results
with very little computational effort. This will allow efficient
and routine calculations of collisional parameters in weakly
interacting molecule-molecule systems relevant to cold and
ultracold collisions.

IV. CONCLUSION

We have carried out explicit quantum calculations of
rotational and vibrational energy transfer in collisions be-
tween two ortho-H2 molecules as well as ortho- and para-H2

molecules in selected initial states. A recently reported
full-dimensional H2-H2 potential surface by Hinde is em-
ployed in the calculations. Results show that both energy and
angular momentum considerations play a key role in rovibra-
tional transitions in H2-H2 collisions. In particular, inelastic
collisions that conserve the total internal rotational angular
momentum and that nearly conserve the internal energy of the
two molecules are found to be highly efficient and selective,
in agreement with previous results on para-H2 collisions. The
selectivity of these quasiresonant rotation-rotation transitions
increase with decrease in collision energy. In ortho-para
collisions where rotational energy exchange is not allowed,
the quasiresonant process occurs through a vibrational quan-
tum exchange. Thus, for 1001 collisions the total inelastic
cross section is found to be completely dominated by the
0011 final channel which corresponds to the exchange of a
quantum of vibrational energy between the two molecules.
This quasiresonant vibration-vibration process dominates
all other inelastic de-excitation channels by about four
orders of magnitude. However, the magnitude of the QRVV
transition is about two orders of magnitude smaller than
the 1103 to 1301 QRRR transition. This is attributed to the
relatively weak dependence of the intermolecular potential
on H-H vibrational coordinate as compared to strong angular
anisotropy. Our findings on QRVV transfer in ortho-para col-
lisions are in overall agreement with previous time-dependent
calculations of Panda et al. performed at higher energies.
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However, our calculations show that the near resonant tran-
sitions become highly efficient and selective at low energies.
When QRVV/QRRR channels are present, the full basis set
can be replaced by a minimal basis set consisting of only
the QRVV/QRRR channels leading to dramatic savings in
computational effort without compromising the accuracy.
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