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Collision-induced energy transfer involving H2 molecules plays an important role in many areas of
physics. Kinetic models often require a complete set of state-to-state rate coefficients for H2+H2

collisions in order to interpret results from spectroscopic observations or to make quantitative pre-
dictions. Recent progress in full-dimensional quantum dynamics using the numerically exact close-
coupling (CC) formulation has provided good agreement with existing experimental data for low-
lying states of H2 and increased the number of state-to-state cross sections that may be reliably
determined over a broad range of energies. Nevertheless, there exist many possible initial states
(e.g., states with high rotational excitation) that still remain elusive from a computational standpoint
even at relatively low collision energies. In these cases, the coupled-states (CS) approximation of-
fers an alternative full-dimensional formulation. We assess the accuracy of the CS approximation
for H2+H2 collisions by comparison with benchmark results obtained using the CC formulation.
The results are used to provide insight into the orientation effects of the various internal energy
transfer mechanisms. A statistical CS approximation is also investigated and cross sections are re-
ported for transitions which would otherwise be impractical to compute. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4864357]

I. INTRODUCTION

Collision-induced energy transfer involving hydrogen
molecules plays an important role in many areas of astro-
physics since H2 is the most abundant molecule in the inter-
stellar medium1 and is the dominant coolant in primordial and
low-metallicity gas.2 Hydrogen molecules are often used to
determine the temperature and density structure of the gas and
to provide diagnostics through emission, absorption, and fluo-
rescence. The rovibrational level populations of the molecules
can be very different from a thermal distribution when there
is a significant amount of external energy input in the system.
Examples include photodissociation regions, star-forming re-
gions, circumstellar shells, and other molecular regions of low
density. These environments often experience a significant de-
parture from local thermodynamic equilibrium (LTE) due to
shocks and UV radiation from a nearby star or star cluster.3–5

In order to accurately model these environments, it is nec-
essary to solve a master equation for the level populations.
This requires detailed knowledge of the state-to-state rate co-
efficients for a variety of microphysical processes including
H2+H2 collisions.

Experimental studies of H2 molecules are difficult due to
the lack of a permanent dipole moment, so measurements of
H2+H2 collisional data have been sparse.6–11 Consequently,
theoretical calculations have been and continue to be the pri-
mary source of state-resolved rate coefficients for astrophys-
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ical modeling. Uncertainties in the theoretical calculations
arise from three contributions: (i) accuracy of the adopted po-
tential energy surface (PES), (ii) level of decoupling approxi-
mation used in the scattering formulation, and (iii) numerical
convergence with respect to the basis set size. Early theoret-
ical studies of H2+H2 collisions were performed by Green12

using the numerically exact close-coupling (CC) formulation
within the rigid rotor approximation, which assumes the vi-
brational motion of each molecule is frozen. Later studies
provided a full-dimensional PES for the four atom system13–16

which allowed the rigid rotor formulation to be extended to in-
clude vibrational motion.17, 18 More recently, a series of quan-
tum dynamics calculations have been reported19–24 which use
a full-dimensional CC formulation to compute the collision
cross sections. The results of these calculations were shown
to provide good agreement with experimental data in the lim-
ited cases where experimental data are available. The calcu-
lations have also increased the number of state-to-state cross
sections that may be reliably determined over a broad range
of energies. Nevertheless, the CC calculations are extremely
time-consuming and there exist many rovibrationally excited
states which have cross sections that are impractical to com-
pute using the CC formulation even at low collision energies.
In these cases, a full-dimensional formulation may be used
with a decoupling approximation to compute the cross sec-
tions. One of the most widely used decoupling approaches is
the coupled-states (CS) approximation which has been for-
mulated for diatom-diatom systems.25, 26 This approximation
has been used to study vibrational relaxation and rotational
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excitation in H2+H2 collisions27–30 using the potential energy
surfaces13–15 that were available at the time. The more recent
PES developed by Hinde16 is believed to provide improved
accuracy for the low-lying vibrational levels of H2. The full-
dimensional CC calculations21, 22 which used the Hinde PES
showed the best agreement with the existing experimental
data. For this reason, we have employed the Hinde PES for
all calculations reported in this work and consider the CC re-
sults which use the Hinde PES to be the best benchmark for
testing the accuracy of the CS approximation.

The CS formulation uses an effective orbital angular mo-
mentum l̄ in the centrifugal potential which remains diag-
onal when the coupled equations are transformed from the
space-fixed (SF) frame to the body-fixed (BF) frame. This
approximation assumes that off-diagonal Coriolis couplings
are negligible which reduces the number of coupled equa-
tions and allows them to be solved more efficiently. The er-
ror introduced by the neglected Coriolis couplings in the CS
formulation has been studied numerically for the rigid ro-
tor approximation26, 28, 29 but as far as we are aware, there
have been no comparable studies for the full-dimensional
diatom-diatom case. Because the CS approximation repre-
sents a means to compute large amounts of data which may
be used to model complex systems, it is important to provide
error analysis of theoretical uncertainties. However, it would
be impractical to perform such analysis for an entire set of
state-to-state data. Therefore, in the present study, we have
chosen a subset of possible transitions which should allow
general trends in the error of the full-dimensional CS approx-
imation to be understood. Comparison of CS and CC results
are made for selected initial states at relatively low collision
energies. Cross sections are then computed using the CS ap-
proach in its full implementation and in a reduced statistical
approximation for an enlarged set of para-H2+para-H2 col-
lisions over a wide range of energies. These cross sections,
many of which would be computationally intractable to obtain
using the CC method, should be useful for estimating state-to-
state rate coefficients for temperatures up to several thousand
K. In addition, the partial cross sections with respect to the BF
projection of the internal angular momentum vector are used
to gain mechanistic insights into the energy transfer process,
including orientation effects.

II. THEORY

Here we review the quantum mechanical CC and CS for-
mulations for diatom-diatom collisions.12, 25, 26 The Hamilto-
nian of the four-atom system

H (�r1, �r2, �R) = T (�r1) + T (�r2) + T ( �R) + V (�r1, �r2, �R), (1)

is composed of a radial kinetic energy term T ( �R) describ-
ing the center-of-mass motion, two kinetic energy terms T (�r1)
and T (�r2) for each diatomic molecule, and the potential

V (�r1, �r2, �R) = U (�r1, �r2, �R) + V (�r1) + V (�r2), (2)

where V (�r1) and V (�r2) are the two-body potential energies
of the isolated H2 molecules and U (�r1, �r2, �R) is the four-
body potential which describes the interaction between the
molecules which vanishes at large molecule-molecule sepa-

rations. The angular dependence of the interaction potential
may be expanded as

U (�r1, �r2, �R) =
∑

λ

Aλ(r1, r2, R) Yλ(r̂1, r̂2, R̂) (3)

with

Yλ(r̂1, r̂2, R̂) =
∑
mλ

〈λ1mλ1λ2mλ2 |λ12mλ12〉Yλ1mλ1
(r̂1)

×Yλ2mλ2
(r̂2) Y ∗

λ12mλ12
(R̂), (4)

where λ and mλ represent the triple indices λ ≡ λ1λ2λ12 and
mλ ≡ mλ1mλ2mλ12 , respectively, 〈...|...〉 represents a Clebsch-
Gordan coefficient, and Ylm(r̂) is a spherical harmonic. The
total wave function for the four-atom system is expanded
in terms of a diabatic basis set which contains the product
function

χvj1j2 (r1, r2) = χv1j1 (r1)χv2j2 (r2) (5)

of H2 wave functions χviji
(ri) with vibrational and rotational

quantum numbers vi and ji, respectively. To compact the no-
tation, we define v ≡ v1v2 and j ≡ j1j2j12 for the quantum
numbers, and [x] ≡ (2x + 1) for the degeneracy factors. The
radial interaction potential, obtained by integrating over the
internal bound coordinates, is given by

Bλ
vj1j2;v′j ′

1j
′
2
(R) =

∫ ∞

0

∫ ∞

0
χvj1j2 (r1, r2)Aλ(r1, r2, R)

×χv′j ′
1j

′
2
(r1, r2)r2

1 r2
2 dr1dr2 . (6)

The form of the full potential matrix depends on the CC and
CS scattering formulations as discussed below. In both cases,
a set of coupled equations must be solved in order to obtain
the desired cross section. For indistinguishable molecules, the
state-to-state cross section for collision energy Ec is given by a
statistically weighted sum of the exchange-permutation sym-
metrized cross sections, σ εP =±1, as follows:

σv1j1v2j2→v′
1j

′
1v

′
2j

′
2
(Ec) = W+σ εP =+1 + W−σ εP =−1, (7)

where W+ = 1 and W− = 0 for para-H2 molecules (nuclear
spin I = 0), and W+ = 2/3 and W− = 1/3 for ortho-H2

molecules (I = 1). The exchange-permutation symmetry εP

is given by (−1)j1+j2+j12+l and (−1)j1+j2+j12+l for the CC and
CS formulations, respectively.25, 26 For ortho-para collisions,
there is no exchange symmetry present, and the full distin-
guishable basis set must be employed.

A. CC formulation

In the CC formulation, the total wave function is ex-
panded as

�(�r1, �r2, �R) = 1

R

∑
v,j,l,J,M

F JM
vjl (R)φJM

vjl (�r1, �r2, R̂), (8)

where l is the orbital angular momentum quantum number, J
is the total angular momentum quantum number, and M is its
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projection on a space-fixed axis. The diabatic functions

φJM
vjl (�r1, �r2, R̂) = χvj1j2 (r1, r2)

〈
r̂1r̂2R̂

∣∣j lJM
〉
, (9)

serve as basis functions where
〈
r̂1r̂2R̂

∣∣j lJM
〉

denote ro-
tational wave functions in the total angular momentum
representation. The radial functions FJM

vjl (R) are obtained by

solving the set of coupled equations,[
− ¯

2

2μ

d2

dR2
+ ¯

2l(l + 1)

2μR2
− Ec

]
FJ

vjl(R)

+
∑
v′j ′l′

V J
vjl;v′j ′l′(R) FJ

v′j ′l′(R) = 0 , (10)

where μ is the reduced mass of the molecule-molecule sys-
tem. The coupled-equations are independent of M, so it is
dropped from the notation. The potential matrix elements are
given in terms of 3j, 6j, and 9j symbols as

V J
vjl;v′j ′l′(R) = (4π )−3/2

∑
λ

(−1)j
′
1+j ′

2+j12+J
(
[j1][j2][j12][l][j ′

1][j ′
2][j ′

12][l′][λ1][λ2][λ]2
)1/2

×
(

l′ λ l

0 0 0

) (
j ′

1 λ1 j1

0 0 0

)(
j ′

2 λ2 j2

0 0 0

) {
l l′ λ

j ′
12 j12 J

} ⎧⎪⎨
⎪⎩

j12 j2 j1

j ′
12 j ′

2 j ′
1

λ λ2 λ1

⎫⎪⎬
⎪⎭Bλ

vj ;v′j ′ (R). (11)

The numerical solution to (10) is propagated to match the
asymptotic boundary condition. The exchange permutation
symmetrized cross sections are obtained from

σ εP = π (1 + δv1v2δj1j2 )(1 + δv′
1v

′
2
δj ′

1j
′
2
)

(2j1 + 1)(2j2 + 1)2μEc

×
∑

Jj12j
′
12ll

′εI

(2J + 1)
∣∣∣T JεI εP

vj l;v′j ′l′(Ec)
∣∣∣2

, (12)

where T is the transition matrix and εI = (−1)j1+j2+l is the
eigenvalue of the spatial inversion operator.

B. CS formulation

In the CS formulation, the total wave function is ex-
panded as

�(�r1, �r2, �R) = 1

R

∑
v,j,J,M,


F JM
vj
 (R)φJM

vj
(�r1, �r2, R̂), (13)

where the coordinates now refer to a BF axis and the quantum
number 
 refers to the BF projection of j12. The diabatic basis
functions are given by

φJM
vj
(�r1, �r2, R̂) = χvj1j2 (r1, r2)

〈
r̂1r̂2R̂

∣∣j
JM
〉
, (14)

where �l = �J − �j12 defines the centrifugal operator l̂2 which
operates on the rotational wave function 〈r̂1r̂2R̂|j
JM〉 in
the BF frame. The potential matrix elements25, 26

V 

vj ;v′j ′ (R) = (4π )−3/2

∑
λ

(−1)j
′
1+j ′

2+j ′
12+


(
[j1][j2][j12][j ′

1][j ′
2][j ′

12][λ1][λ2][λ]2
)1/2

×
(

j ′
1 λ1 j1

0 0 0

) (
j ′

2 λ2 j2

0 0 0

) (
j ′

12 λ j12


 0 −


) ⎧⎪⎨
⎪⎩

j12 j2 j1

j ′
12 j ′

2 j ′
1

λ λ2 λ1

⎫⎪⎬
⎪⎭Bλ

vj ;v′j ′(R) (15)

are diagonal with respect to 
 and are independent of J. The
CS approximation is made by assuming that the off-diagonal
elements of l̂2 with respect to 
 are small and that the di-
agonal elements may be approximated by ¯2 l̄(l̄ + 1) where
the effective orbital angular momentum quantum number l̄

replaces J. The radial functions FJM
vj
 (R) in Eq. (13) are then

written as F

vj (R) and obtained by solving the set of coupled

equations,

[
− ¯

2

2μ

d2

dR2
+ ¯

2 l̄(l̄ + 1)

2μR2
− Ec

]
F


vj (R)

+
∑
v′j ′

V 

vj ;v′j ′ (R) F


v′j ′(R) = 0. (16)
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This set of Eq. (16) is considerably more compact than the set
of Eq. (10) due to the decoupling of the orbital angular mo-
mentum. The exchange permutation symmetrized cross sec-
tions are given by

σ εP = π (1 + δv1v2δj1j2 )(1 + δv′
1v

′
2
δj ′

1j
′
2
)

(2j1 + 1)(2j2 + 1)2μEc

×
∑

j12j
′
12 l̄


(2l̄ + 1)
∣∣∣T l̄
εP

vj ;v′j ′ (Ec)
∣∣∣2

. (17)

Here, the inversion symmetry is ignored since the sym-
metrized potential matrix elements are identical to the unsym-
metrized elements except when 
 = 0.25, 26 The sum over 


assumes positive and negative values such that |
| ≤ 
max

= j1 + j2. In practice, only non-negative values of 
 are com-
puted and the positive 
 contributions are doubled.

A statistical approximation was introduced26 which fur-
ther assumes that all of the contributions from individual
values of 
 are identical. This assumption yields the cross
section

σ εP = π (1 + δv1v2δj1j2 )(1 + δv′
1v

′
2
δj ′

1j
′
2
)

(2j1 + 1)(2j2 + 1)2μEc

×
∑

j12j
′
12 l̄

(2l̄ + 1) [2min
(
j12, j

′
12

) + 1]
∣∣∣T l̄
̄εP

vj ;v′j ′(Ec)
∣∣∣2

,

(18)

where 
̄ is the single value used in the calculation. The sta-
tistical CS approximation is tested for the case 
̄ = 0 in
Sec. III C.

III. RESULTS

The results shown in this work are for para-H2+para-H2

collisions. The calculations were performed using a modified
version of the TwoBC code.31 The log-derivative matrix prop-
agation method of Johnson32 and Manolopoulos33 was used to
integrate the coupled equations from R = 3 − 53 a.u. in steps
of 0.05 a.u. All basis sets included jmax = 10 for v = 0, jmax

= 8 for v = 1, and jmax = 6 for v = 2. Following previous
work,21, 22, 24 an energy cut-off was used to increase the com-
putational efficiency. We found it convenient and sufficient to
set the cut-off energy to 5000 cm−1 above the internal energy
of the initial combined molecular state (CMS). Figure 1 shows
the number of coupled channels that are required by the CC
formulation for each value of J. The curves are labeled ac-
cording to the notation v1j1v2j2 for the initial CMS. The total
number of combined molecular basis states is also included
in the legend. The computational cost of the CC calculations
increases rapidly with J and the number of CMSs. For J
= 10, there are more than 3000 coupled equations for the
1008 and 1010 initial states. The number of coupled equa-
tions required by the CS formulation also increases with the
number of CMSs but not with J (or equivalently l) and is
typically less than 500 as shown by the J = 0 points in
Figure 1. The computational cost of the CS calculations is
therefore manageable at high collision energies where large
values of orbital angular momentum are required.
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FIG. 1. Number of coupled channels as a function of total angular momen-
tum J for the CC formulation. The curves are labeled according to the nota-
tion v1j1v2j2 for the initial CMS. An energy cut-off of 5000 cm−1 above the
internal energy of the initial CMS is assumed in determining the number of
combined molecular basis states (see legend).

The CS calculations were carried out at ten equally
spaced collision energies in each of the three decades:
10–100 K, 100–1000 K, and 1000–10 000 K using a maxi-
mum effective orbital angular momentum given by

lmax =
⎧⎨
⎩

10, Ec = 10–100 K
50, Ec = 100–1000 K
100, Ec = 1000–10 000 K

. (19)

Excellent agreement was seen at the Ec boundaries, and ex-
tensive convergence tests verified that the results were con-
verged to within 5% or better with respect to the basis set. The
CC calculations were performed for Ec ≤ 100 K using Jmax

= 10, and excellent agreement with previous calculations21
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FIG. 2. Elastic cross sections for H2(v1, j1) + H2(v2, j2) collisions. The
curves are labeled according to the notation v1j1v2j2 for the combined
molecular state. The agreement between CC (points) and CS (lines) is ex-
cellent for each of these states.
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FIG. 3. Inelastic cross sections for 1000 and 1010 initial states using CC (points) and CS (lines) methods. Panels (a) and (c) show that the agreement is excellent
for pure vibrational transitions and rotational transitions involving only one molecule. Panels (b) and (d) show that the agreement is not as good when both
molecules undergo a multi-quantum rotational change. The discrepancies shown in (d) are less important than in (b) due to the QR transitions to the 2000 state
shown in (c).

was observed. Additional CC results were obtained at
these relatively low collision energies, and a comparison
of the CC and CS methods was made to estimate the
typical discrepancies that may be expected from the CS
approximation.

A. Comparison of CS versus CC results

To assess the reliability of the CS calculations, we first
benchmark select CS results against numerically exact CC
results. Figure 2 compares the elastic scattering cross sec-
tions. The CC and CS calculations are shown as points and
lines, respectively. The results are virtually identical for each
state shown. The excellent agreement is not surprising for
states 1000 and 1010 which have no rotational excitation
because the diagonal matrix elements are identical for the

two formulations when j12 = 0. The excellent agreement for
the states 1002, 1004, and 1006 is encouraging considering
that these states have internal rotational angular momentum,
and it is states with high rotational excitation that become
intractable in the CC formulation. It is noteworthy that the
CS cross sections for the rotationally excited states converge
more quickly with J than do the CC cross sections. This pro-
vides an additional computational cost savings for the CS
calculations.

The CS and CC inelastic cross sections for 1000 and
1010 shown in Figure 3 are also in good agreement for
pure vibrational transitions and rotational transitions involv-
ing only one molecule. These transitions tend to be among
the most efficient for a given initial state, so the good agree-
ment between the CS and CC results is encouraging. Figure 3
also shows inelastic cross sections for 1000 and 1010 which
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FIG. 4. CC versus CS inelastic cross sections for (a) 1002, (b) 1004, (c) 1006, and (d) 1202 initial states. The CS approximation is able to get the correct pattern
of relative efficiencies, however, the discrepancy for some of the most important transitions may be as large as ∼50%. The accuracy of the CS approximation
may improve when both molecules have rotational excitation [e.g., the 1202 initial state shown in panel (d)].

involve transitions where both molecules undergo a rotational
change. In these cases, the agreement between the two scatter-
ing formulations is less satisfactory, especially when the tran-
sition involves a multi-quantum change in j. Fortunately, tran-
sitions which involve multi-quantum changes tend to be less
efficient than transitions which involve only single-quantum
changes, so the discrepancy introduced by the CS approxima-
tion may be reduced in significance for these cases. Never-
theless, there are examples which do not follow this trend.
Figure 3(b) shows such a case for the 1000 initial state.
The 1000 → 0404 cross section, which the CC calculation
shows is the second largest at energies greater than 10 K,
is about a factor of two smaller when calculated using the
CS approximation. This discrepancy would incorrectly lower
the cross section for this transition below that of the 1000
→ 0002 transition (compare Figure 3(a)). Likewise, the 1010
→ 0414 cross section is about two times smaller than it

should be when calculated using the CS approximation (see
Figure 3(d)). However, in this case, the quasi-resonant (QR)
1010 → 2000 transition is so dominant (see Figure 3(c)) that
discrepancies contained in all other transitions are likely to be
unimportant.

There are discrepancies in the CS results for initial states
which are rotationally excited. Figure 4 shows several exam-
ples including the 1002, 1004, and 1006 initial states which
showed virtually no error in the elastic scattering cross sec-
tions (see Figure 2). Differences between the CC and CS
cross sections can be as large as ∼50%. Nevertheless, the
CS approximation is able to predict the correct pattern of
relative efficiencies and reproduce the correct energy depen-
dence for these initial states. Therefore, it may be useful
to employ a single low-energy CC calculation to “anchor”
higher energy CS cross sections. This technique was found
to work well for He+CO collisions.34 Figure 4(d) shows
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FIG. 5. Total CS quenching cross sections for (a) 1002, (b) 1004, (c) 1006, and (d) 1008 initial states. The upturns in the cross sections are due to the opening
of the v = 1, j = 2 state (with the other molecule unchanged) which occurs at 484 K.

that the accuracy of the CS approximation for the dominant
transitions can improve when both molecules have rotational
excitation. For the 1202 initial state shown in the figure, the
single molecule rotational de-excitation transitions are the
most efficient and the agreement between the CS and CC re-
sults is excellent.

B. Dependence of CS cross sections on Ec and �

The statistical CS approximation introduced in Ref. 26
assumes that all of the individual 
 contributions are iden-
tical, so that the sum over 
 may be replaced by a single
value of 
 with a statistical weight equal to 2min(j12, j

′
12) + 1

as shown in Eq. (18). In order to assess this approximation,
it is helpful to study the variability in the partial cross sec-
tions for the different values of 
. Figures 5–9 show a sam-
ple of our results for different initial states. In each figure,
all 
-contributions which connect to the initial state of inter-

est are shown. The partial cross sections generally decrease
with 
 due to the decreasing number of j12 values which can
contribute to the transition. However, the pattern of this de-
crease is not always smooth and regular. For example, Fig-
ure 5(a) shows that the 
 = 2 contribution to the quench-
ing of the 1002 state is about a factor of 10 smaller than
the 
 ≤ 1 contributions when the collision energy is less
than 700 K. In this case, there is a QR transition to 1200
which is dominant at low energies (see Figure 4(a)) and only
a single j12 value contributes to the transition for each partial
cross section. The relative inefficiency of the 
 = 2 contri-
bution suggests that the QR mechanism is less likely to occur
when the plane of the diatomic rotational motion is perpen-
dicular to the BF z-axis. As the collision energy increases,
additional states become available and the QR mechanism
becomes less effective. The upturn in Figure 5(a) is due to
the opening of the 1202 state for collision energies above
484 K. Similar upturns are found in the quenching cross sec-
tions for the 1004, 1006, and 1008 initial states shown in
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FIG. 6. Total CS quenching cross sections for (a) 1202, (b) 1204, (c) 1206, and (d) 1208 initial states. The step-like structure for 
 = 3 and 4 in (a) is due to
the opening of the 1400 and 1004 states above 603 K and 687 K, respectively. The more gradual upturns in (b)-(d) are due to the opening of the v = 1, j = 4
state (with the other molecule unchanged) which occurs at 1113 K.

Figure 5 due to the opening of the 1204, 1206, 1208 states,
respectively. A general pattern may be observed in Figure 5
for initial states which have one molecule in the rotational
ground state: as the rotational level of the other molecule in-
creases, the contributions from all 
 tend to nearly converge,
particularly at low collision energies, in accordance with the
assumption used to justify the statistical approximation intro-
duced previously.26

Figure 6 shows results for initial states that have rota-
tional excitation in both molecules. Here, the decreasing con-
tributions for large 
 are even more dramatic. This is due
to the dominance of transitions to final states which have a
maximum value of 
 which is less than the maximum initial
value. For example, Figure 6(a) shows results for 1202 initial
state whose quenching is dominated by transitions to 1002
and 1200 at low collision energies (see Figure 4(d)). At high
energies, the 1004 and 1400 states become available, and the

 = 3 and 
 = 4 contributions are substantially increased. In
Figure 6(b), the low energy cross section is dominated by a
QR transition to the 1402 state. Similar to the 1002 → 1200

transition described above, the QR mechanism is less effec-
tive when the planes of diatomic rotational motion are per-
pendicular to the BF z-axis. However, for the 1204 → 1402
transition, the strong decrease with 
 is also due to the de-
creasing number of j12 values that can have the larger pro-
jections. The upturn in Figure 6(b) is due to the opening of
the 1404 state which combines with several other states to re-
duce the QR mechanism. The cross sections for the 1206 and
1208 initial states shown in Figures 6(c) and 6(d) are dom-
inated at low energies by pure rotational transitions to 1006
and 1008, respectively. In both of these cases, the dominant
final state has a maximum 
 which is two less than the max-
imum 
 allowed by the initial state, and consequently, the
last two 
-contributions to the total quenching cross section
are significantly suppressed. As in Figure 6(a), the opening of
additional final states with energy (primarily 1406 for Figure
6(c) and 1408 for Figure 6(d)) helps to close the gap between
the 
-contributions.

Figure 7(a) shows a case where there is significant struc-
ture in the energy dependence of the cross sections. For
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FIG. 7. Total CS quenching cross sections for (a) 1402, (b) 1404, (c) 1406, and (d) 1408 initial states. The step-like structure in (a) is due to the opening of the
1204 state above 59 K. In (b), the 1602 state opens at energies above 531 K and produces a step-like structure for the 
 = 7 and 8 contributions.

collision energies at or below 50 K, the dominant transition
is 1402 → 1400. Because 
 = 5 and 
 = 6 do not con-
tribute to this transition, the curves are lower than the 
 < 5
contributions by several orders of magnitude. At collision en-
ergies above 50 K, however, the 1204 final state becomes
energetically allowed, and the 
 = 5 and 
 = 6 contribu-
tions become more significant. The total quenching cross sec-
tion shows a step-like structure at the transition energy, 59 K,
where the state 1204 first becomes energetically open. Such
step-like structures in the total inelastic cross section are often
observed at boundaries where QR transitions are available.35

The quenching cross section shown in Figure 7(b) is domi-
nated at low energies by pure rotational transitions to 1204
and 1402 final states. Consequently, the 
 = 7 and 
 = 8 con-
tributions are negligible. At energies above 531 K, the 1602
state is open which produces a step-like increase for these
last two 
-contributions and a gradual increase for the other
partial cross sections. The behavior for the quenching cross

sections shown in Figures 7(c) and 7(d) is smooth and regular
compared to the sharp structures described above. For the ini-
tial 1406 state, a QR transition to the 1604 state is dominant
at low energies. The efficiency of the QR mechanism is again
reduced when the rotational axes of the rotors are aligned with
the BF z-axis, but the effect is masked by the large number of
j12 values that can contribute to the QR transition. For energies
greater than 1000 K, several other transitions have compara-
ble efficiencies to that of the 1604 state, and a slight upturn
in the cross section is seen. The 1408 initial state does not
make a QR transition but instead allows competing transitions
to take place with the 1606 and 1208 states being the most
probable.

The 1602 initial state also allows many competing transi-
tions, so the total quenching cross sections in Figure 8(a) re-
semble those in Figure 7(d). A step-like structure is observed
for all partial cross sections shown in Figure 8(b) for the initial
1604 state at 100 K. Below this collision energy, the dominant
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FIG. 8. Total CS quenching cross sections for (a) 1602, (b) 1604, (c) 1606, and (d) 1608 initial states. The step-like structure in (b) is due to the opening of the
1406 state above 91 K. The more gradual upturn in (c) is due to the opening of the 1804 and 1408 states above 442 K and 653 K, respectively.

transition is to the 1602 state which has no contribution from

 = 9 and 
 = 10. At 100 K, a QR transition to the 1406
final state is accessible and all of the 
 contributions are en-
hanced including the 
 = 9 and 
 = 10 contributions which
experience the largest increase. A more gradual step structure
is seen in Figure 8(c) for the initial 1606 state. In this case,
the low energy side of the step is dominated by transitions to
1604, 1406, and 0808 states. At high energies, relatively effi-
cient transitions to the 1804 and 1408 states are allowed which
adds to the other transitions and produces the step structure.
For the 1608 initial state shown in Figure 8(d), the quenching
is dominated by a QR transition to 1806 for all energies below
1000 K. Above this energy, several other transitions begin to
contribute and an upturn is seen in the total quenching cross
section.

Figure 9 shows results for initial states that have vi-
brational excitation in both molecules. The results are sim-
ilar to those of initial states with the same rotational exci-
tation in each molecule but with only a single vibrationally

excited level. A notable difference, however, is the increased
dominance of the 
 = 0 contribution for the doubly vibra-
tionally excited states compared to the singly excited states.
Comparison of Figure 9(a) with Figure 6(a) shows that the
falloff of the 
 = 3 and 
 = 4 contributions to the j1
= j2 = 2 cross section is far less when both molecules are
vibrationally excited. Likewise, a comparison of Figure 9(b)
with Figure 7(b) shows a significantly reduced falloff of
the 
 = 7 and 
 = 8 contributions to the j1 = j2 = 4
cross section when both molecules are vibrationally excited.
Figure 9(c) shows that the partial cross sections for initial
state 1616 vary over only an order of magnitude for low en-
ergies, whereas those of 1606 (see Figure 8(c)) vary over
several orders of magnitude. Figure 9 also shows that the
cross sections decrease by roughly an order of magnitude with
each increase in rotational excitation. This is due to the in-
creasing energy gap which occurs for pure rotational transi-
tions which are the dominant transitions for these molecular
states.
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FIG. 9. Total CS quenching cross sections for (a) 1212, (b) 1414, (c) 1616, and (d) 1818 initial states. The cross sections for collisions between identical
molecular states appear to decrease by about an order of magnitude with each increase in rotational excitation.

C. Comparison of the full and statistical CS
approaches

The above observations suggest that the conventional sta-
tistical CS approximation would produce less than satisfac-
tory results for H2+H2 collisions when the full set of partial
cross sections is replaced by a single 
-contribution multi-
plied by a statistical degeneracy factor. This was tested us-
ing the 
 = 0 contribution, so we refer to this version as
the “CS0” approximation. Tables I–IV show numerical re-
sults for the CS0 approximation along with those for a mod-
ified statistical approximation. In the modified version, only
even non-negative 
 contributions are computed, and the pos-
itive 
 contributions are multiplied by a weight factor of 4 to
account for the degeneracy of positive and negative projec-
tions and the neglect of odd-
 contributions. This scheme is
similar to a commonly used statistical approximation for the
sum over J at high energies. In the present case, the com-
putational effort is cut in half compared to the full CS ap-
proximation. Therefore, we refer to this version as the “half

CS” approximation. Both statistical approximations are com-
pared against the full CS results for the 1002, 1004, 1006,
and 1008 initial states. The tables show that the half CS re-
sults are considerably more accurate than the CS0 results
for most transitions. The accuracy for the largest cross sec-
tions improves as 
max, the maximum value of j12 for the ini-
tial state, increases. Generally, the largest discrepancies occur
for transitions where min[
max,


′
max] = 2 which give typi-

cal differences of about 40% for the half CS approximation.
This is due to the importance of the neglected 
 = 1 con-
tribution compared to the 
 = 0 and 
 = 2 contributions.
As the number of contributing projections increases, the half
CS statistical approximation generally improves. For transi-
tions where min[
max,


′
max] ≥ 4, the half CS approximation

gives agreement to within 20% or better. The results of the
CS0 approximation are more erratic and show differences ex-
ceeding 100% for many of the transitions. Because the full CS
cross sections appear to depend on 
 in a relatively smooth
fashion at high energies (see Figures 5–9), it is conceivable
that the half CS approximation could be further improved
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TABLE I. Comparison of full CS and statistical CS approximations for the 1002 initial state. Cross sections (Å2)
are shown at E = 100 K for the most efficient transitions in descending order. The left and right % difference
columns compare the respective half CS and CS0 results with the full CS approximation. The smaller error is
bold-faced in order to show that the half CS approximation performs better than the CS0 approximation in most
cases.

Final state Full CS Half CS CS0 % Difference % Difference

1002 0.103 × 10+3 0.101 × 10+3 0.105 × 10+3 0.200 × 10+1 0.119 × 10+1

1200 0.256 × 10+1 0.144 × 10+1 0.645 × 10+1 0.437 × 10+2 0.152 × 10+3

1000 0.279 × 10−1 0.279 × 10−1 0.279 × 10−1 0.000 × 100 0.000 × 100

0406 0.727 × 10−7 0.642 × 10−7 0.680 × 10−7 0.117 × 10+2 0.655 × 10+1

0202 0.620 × 10−7 0.555 × 10−7 0.253 × 10−7 0.105 × 10+2 0.592 × 10+2

0002 0.529 × 10−7 0.500 × 10−7 0.544 × 10−7 0.552 × 10+1 0.291 × 10+1

0404 0.457 × 10−7 0.261 × 10−7 0.152 × 10−7 0.430 × 10+2 0.668 × 10+2

0204 0.265 × 10−7 0.156 × 10−7 0.156 × 10−7 0.411 × 10+2 0.414 × 10+2

0004 0.524 × 10−8 0.416 × 10−8 0.767 × 10−8 0.207 × 10+2 0.462 × 10+2

0206 0.364 × 10−8 0.388 × 10−8 0.193 × 10−8 0.656 × 10+1 0.471 × 10+2

0000 0.282 × 10−8 0.282 × 10−8 0.282 × 10−8 0.000 × 100 0.000 × 100

TABLE II. Comparison of full CS and statistical CS approximations for the 1004 initial state. Cross sections
(Å2) are shown at E = 100 K for the most efficient transitions in descending order. The left and right % difference
columns compare the respective half CS and CS0 results with the full CS approximation. The smaller error is
bold-faced in order to show that the half CS approximation performs better than the CS0 approximation in most
cases.

Final state Full CS Half CS CS0 % Difference % Difference

1004 0.107 × 10+3 0.105 × 10+3 0.111 × 10+3 0.144 × 10+1 0.439 × 10+1

1202 0.187 × 10−1 0.142 × 10−1 0.152 × 10−1 0.240 × 10+2 0.191 × 10+2

1002 0.478 × 10−2 0.355 × 10−2 0.687 × 10−2 0.258 × 10+2 0.435 × 10+2

1400 0.161 × 10−2 0.120 × 10−2 0.342 × 10−2 0.255 × 10+2 0.112 × 10+3

1200 0.255 × 10−3 0.148 × 10−3 0.664 × 10−3 0.421 × 10+2 0.160 × 10+3

1000 0.210 × 10−4 0.210 × 10−4 0.210 × 10−4 0.000 × 100 0.000 × 100

0408 0.125 × 10−5 0.110 × 10−5 0.147 × 10−5 0.119 × 10+2 0.178 × 10+2

0406 0.773 × 10−7 0.798 × 10−7 0.303 × 10−7 0.325 × 10+1 0.608 × 10+2

0004 0.435 × 10−7 0.427 × 10−7 0.378 × 10−7 0.183 × 10+1 0.131 × 10+2

0206 0.356 × 10−7 0.350 × 10−7 0.282 × 10−7 0.162 × 10+1 0.207 × 10+2

0204 0.269 × 10−7 0.285 × 10−7 0.230 × 10−7 0.601 × 10+1 0.147 × 10+2

0208 0.211 × 10−7 0.295 × 10−7 0.412 × 10−8 0.401 × 10+2 0.805 × 10+2

0404 0.152 × 10−7 0.134 × 10−7 0.722 × 10−8 0.122 × 10+2 0.526 × 10+2

TABLE III. Comparison of full CS and statistical CS approximations for the 1006 initial state. Cross sections
(Å2) are shown at E = 100 K for the most efficient transitions in descending order. The left and right % difference
columns compare the respective half CS and CS0 results with the full CS approximation. The smaller error is
bold-faced in order to show that the half CS approximation performs better than the CS0 approximation in most
cases.

Final state Full CS Half CS CS0 % Difference % Difference

1006 0.108 × 10+3 0.107 × 10+3 0.113 × 10+3 0.101 × 10+1 0.447 × 10+1

1204 0.136 × 10−2 0.114 × 10−2 0.141 × 10−2 0.155 × 10+2 0.380 × 10+1

1004 0.560 × 10−3 0.462 × 10−3 0.925 × 10−3 0.175 × 10+2 0.650 × 10+2

1600 0.321 × 10−3 0.381 × 10−3 0.132 × 10−3 0.187 × 10+2 0.589 × 10+2

1404 0.460 × 10−4 0.438 × 10−4 0.147 × 10−4 0.485 × 10+1 0.680 × 10+2

1402 0.373 × 10−4 0.298 × 10−4 0.454 × 10−4 0.202 × 10+2 0.217 × 10+2

1202 0.116 × 10−4 0.848 × 10−5 0.109 × 10−4 0.268 × 10+2 0.594 × 10+1

1002 0.207 × 10−5 0.140 × 10−5 0.333 × 10−5 0.322 × 10+2 0.608 × 10+2

1400 0.128 × 10−5 0.994 × 10−6 0.263 × 10−5 0.221 × 10+2 0.106 × 10+3

0408 0.175 × 10−6 0.171 × 10−6 0.128 × 10−6 0.197 × 10+1 0.269 × 10+2

1200 0.163 × 10−6 0.969 × 10−7 0.418 × 10−6 0.404 × 10+2 0.157 × 10+3

0208 0.118 × 10−6 0.113 × 10−6 0.151 × 10−6 0.441 × 10+1 0.278 × 10+2

02010 0.103 × 10−6 0.125 × 10−6 0.160 × 10−7 0.217 × 10+2 0.844 × 10+2

0006 0.507 × 10−7 0.510 × 10−7 0.465 × 10−7 0.527 × 100 0.840 × 10+1

0206 0.243 × 10−7 0.249 × 10−7 0.271 × 10−7 0.276 × 10+1 0.117 × 10+2
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TABLE IV. Comparison of full CS and statistical CS approximations for the 1008 initial state. Cross sections
(Å2) are shown at E = 100 K for the most efficient transitions in descending order. The left and right % difference
columns compare the respective half CS and CS0 results with the full CS approximation. The smaller error is
bold-faced in order to show that the half CS approximation performs better than the CS0 approximation in most
cases.

Final state Full CS Half CS CS0 % Difference % Difference

1008 0.110 × 10+3 0.110 × 10+3 0.116 × 10+3 0.793 × 100 0.459 × 10+1

1800 0.598 × 10−3 0.635 × 10−3 0.415 × 10−3 0.624 × 10+1 0.306 × 10+2

1206 0.161 × 10−3 0.142 × 10−3 0.200 × 10−3 0.117 × 10+2 0.241 × 10+2

1006 0.837 × 10−4 0.728 × 10−4 0.146 × 10−3 0.131 × 10+2 0.739 × 10+2

1406 0.977 × 10−5 0.895 × 10−5 0.577 × 10−5 0.841 × 10+1 0.409 × 10+2

1404 0.899 × 10−6 0.768 × 10−6 0.643 × 10−6 0.145 × 10+2 0.284 × 10+2

1204 0.706 × 10−6 0.577 × 10−6 0.859 × 10−6 0.183 × 10+2 0.217 × 10+2

02010 0.514 × 10−6 0.485 × 10−6 0.721 × 10−6 0.559 × 10+1 0.404 × 10+2

1604 0.499 × 10−6 0.482 × 10−6 0.237 × 10−6 0.352 × 10+1 0.525 × 10+2

04010 0.466 × 10−6 0.445 × 10−6 0.473 × 10−6 0.452 × 10+1 0.142 × 10+1

1004 0.177 × 10−6 0.140 × 10−6 0.336 × 10−6 0.209 × 10+2 0.895 × 10+2

1600 0.954 × 10−7 0.839 × 10−7 0.158 × 10−6 0.121 × 10+2 0.652 × 10+2

1602 0.717 × 10−7 0.640 × 10−7 0.761 × 10−7 0.108 × 10+2 0.618 × 10+1

0008 0.625 × 10−7 0.630 × 10−7 0.567 × 10−7 0.792 × 100 0.915 × 10+1

00010 0.508 × 10−7 0.461 × 10−7 0.797 × 10−7 0.923 × 10+1 0.568 × 10+2

upon if an appropriate functional form was developed that
takes advantage of this smooth dependence.

IV. CONCLUSIONS

The accuracy of the CS approximation for H2+H2 col-
lisions was studied for translational energies less than 100 K
by comparison with results obtained using the numerically ex-
act CC formulation. Both sets of calculations were performed
on a state-of-the-art PES16 which allows for full-dimensional
dynamics. The CS approximation was found to give quanti-
tative accuracy for elastic scattering and for pure vibrational
and rotational transitions involving only one molecule. It was
also found to be generally reliable for estimating relative cross
sections. Exceptions were observed when both molecules un-
dergo multi-quantum changes. Transitions involving multi-
quantum changes are often inefficient which would reduce the
significance of the discrepancies in such cases.

An extensive study of the 
-dependency of the CS cross
sections was performed in order to find ways to further re-
duce the computational cost of the calculations and to pro-
vide insight into the internal energy transfer mechanisms. The
variability in the partial cross sections for different values of

 was found to be too large to apply the statistical approx-
imation introduced previously.26 A modified statistical CS
approximation was introduced which calculates partial cross
sections for only non-negative even projections and cuts the
computational time in half compared to the full CS approxi-
mation. The results were found to be reliable to within 20%
for transitions with min[
max,


′
max] ≥ 4 and tended to im-

prove as 
max increases. The computational efficiency also
improves with 
 due to the decreasing number of j12 values
which must be included in the basis set. Therefore, the CS
approximation offers a practical means to compute cross sec-
tions for diatom-diatom systems which have significant rota-
tional excitation.

Although no results are presented for ortho-ortho colli-
sions, preliminary calculations have found that the exchange-
permutation symmetrized cross sections σ εP =±1 are virtually
identical for collision energies above 20 K. This observation
suggests that a single exchange symmetry may be used, sim-
ilar to the para-para case, which would provide an additional
computational cost saving. For ortho-para collisions, the full
distinguishable basis sets are considerably larger than the ex-
change symmetrized basis sets, and the computational cost of
the CC method is very high even for low-lying initial states.22

The CS approximation is likely to be the best option for this
case and may be expected to provide comparable accuracy to
the para-para cross sections presented here.

The results of this work are encouraging for other diatom-
diatom systems which have more closely spaced rotational
levels. An important example is H2+CO in low density as-
trophysical environments which typically require a non-LTE
analysis for excited rotational levels. Previous calculations for
this system36 have already demonstrated good agreement be-
tween CS and CC formulations when using the rigid rotor
approximation. It would be desirable to extend these calcula-
tions to include a full-dimensional treatment. As in the present
case, a combination of CC and CS methods would likely be
needed to obtain a large set of state-to-state rate coefficients
for use in the astrophysical models.
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