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Ionization in collisions between metastable hydrogen atoms
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Associative and Penning ionization cross sections are calculated for collisions between metastable hydrogen 2s

atoms at thermal energies. Cross sections for deuterium 2s collisions are also reported. The associative ionization
cross sections behave as E−1 for collision energy E, in agreement with an existing experiment. The Penning
ionization cross sections dominate for all energies and are found to follow the E−2/3 behavior that was predicted
in previous work for the total ionization cross section. The magnitudes of our theoretical associative ionization
cross sections for H(2s) + H(2s) collisions are between two and four times larger than the experimental data.
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I. INTRODUCTION

Associative ionization is the most elementary bond-forming
process that can occur during a collision of two atoms. The
translational energy of the colliding atoms is transferred into
kinetic energy of the ejected electron leaving the positively
charged molecular ion in its ground or excited rovibrational
state. This process has been studied for metastable hydrogen
atom collisions with various targets [1–7] including ground-
state hydrogen atoms where it provides a mechanism which is
believed to contribute to the formation of H2

+ in astrophysical
environments that are not in local thermodynamic equilib-
rium. These include protostellar outflows [8], envelopes of
supernovae [9], and stellar atmospheres [10–12]. The inverse
process of dissociative recombination of H2

+ is also known
to be important in many astrophysical environments and,
due to its technological importance, has been the subject
of extensive theoretical [13–22] and experimental [23–34]
investigations. Associative ionization between two metastable
hydrogen atoms is less likely to occur naturally due to
competition with other reactions. Nevertheless, the process
is of fundamental interest and has been studied experimentally
[6]. To our knowledge, there have been no theoretical studies
reported for associative ionization between two metastable
hydrogen atoms. Theoretical results have been reported [35]
for associative ionization due to colliding pairs of excited
helium atoms. This system is similar to the case of metastable
hydrogen but considerably more complex. The theoretical
simplicity of hydrogen makes it ideal for studying fundamental
physics and offers an opportunity to gain better insights into
the collisional dynamics.

Production of cold metastable hydrogen atoms [36–40] also
opens the door to a variety of possible applications including
the development of a Lyman-α laser [38,40], the use of H(2s)
atoms as a diagnostic in Bose-Einstein condensation [41–43],
and improved accuracy in the determination of fundamental
constants [44]. An important prerequisite for achieving the
goal of high-resolution spectroscopy of metastable hydrogen
is a detailed understanding of the atomic collisions. The
mutual destruction of 2s atoms in collisions limits the density
of metastable atoms that can be achieved. This limit has
implications for schemes that use slow beams of D(2s) atoms
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in a deuterium atomic parity violation experiment [45]. The
process may also be important in the interpretation of precision
measurements of the two-photon transition frequency [46].
Collisional production of fast metastable hydrogen atoms from
cold H2 has recently been demonstrated [47] and may also lead
to important applications.

Once formed, collisional quenching of pairs of H(2s) atoms
may occur through either of the associative and Penning
ionization reactions:

H(2s) + H(2s) → H+
2 + e−, (1)

H(2s) + H(2s) → H(1s) + H+ + e−, (2)

or via the single and double excitation transfer reactions:

H(2s) + H(2s) → H(2s) + H(2p), (3)

H(2s) + H(2s) → H(2p) + H(2p), (4)

and likewise for D(2s) reactions. The competitive balance
between the collisional quenching processes (1)–(4) should
be understood at the highest-possible level of detail. A series
of calculations [48–52] have addressed this issue and provided
theoretical benchmarks for this fundamental system. However,
the calculated trap loss rate coefficients are about 4 times
larger than the experimental values and show little temperature
variation in the 100 to 200 μK region where the experiment
suggests there may be a significant decrease [39]. At such
low collision energies, there are many considerations that
complicate the calculations including spin-orbit, hyperfine,
and nonadiabatic radial and angular couplings. At thermal
energies, these couplings become negligible, and it should be
easier to gain insight into the ionization part of the collisional
quenching process. Additionally, there are experimental data
[6] for the associative ionization contribution that may be
directly compared against.

The associative ionization process (1) competes with the
Penning ionization process (2). Both reactions are highly
exothermic with �E ranging from 6.8 eV for Penning
ionization to 9.45 eV for associative ionization into the ground
rovibrational state. The large number of open final states
effectively forms a complete set which justifies the use of
a local potential formulation. At the energies considered in
the present work, the energy splitting between the 2s and
2p states may be neglected, which allows the dynamics of
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the ionization to be studied using only a single complex
potential energy curve. The bound and continuum rovibra-
tional wave functions are computed using a square-integrable
Sturmian basis set. The positive energy pseudostates provide a
discretized representation of the H2

+ continuum. Transitions
to bound states are summed over to obtain the associative
ionization cross section. Likewise, transitions to the positive
energy pseudostates are summed over to obtain the Penning
cross section. The completeness of the rovibrational basis set
is measured by adding the associative and Penning ionization
cross sections together and comparing with the cross section
obtained by using the unitarity property of the S-matrix. The
sum rule is found to be well satisfied for metastable hydrogen
and deuterium systems. Numerical results for 1�+

g and 3�+
u

symmetries are reported for H(2s) + H(2s), D(2s) + D(2s),
and H(2s) + D(2s) collisions, and comparisons are made with
a Langevin model and an experiment [6] over a wide range of
energies.

II. THEORY

A pair of 2s hydrogen atoms may approach in either a
1�+

g or a 3�+
u molecular state. Since the 2s and 2p states are

nearly degenerate, the molecular interaction strongly couples
the atomic product state φ2sφ2s with φ2sφ2p and φ2pφ2p

states of the same molecular symmetry. States with different
molecular symmetry are also coupled due to the spin-orbit
interaction. The full set of doubly excited molecular states
converging to the H(n = 2) + H(n′ = 2) limit, the so-called
Q(2) states, has been calculated over the entire range of
internuclear distance R, and the associated energies and
autoionization widths have been used to construct complex
potential curves [49,51]. Multichannel scattering formulations
have been used to calculate the collision cross sections at low
translational energies [48,50]. At thermal energies, the tiny
energy splitting between the 2s and 2p states may be ignored,
and the contribution from the Coriolis force is also expected
to be weak. Therefore, it is possible to simplify the analysis
by considering only single-channel scattering on the complex
potentials V±(R) which have the asymptotic behavior [48]

V±(R) ∼ ±C3

R3
+ O(R−5), (5)

where C3 = 9
√

6 and the energy is in atomic units. In this
formulation, the wave function describing the approach of one
2s atom on nuclei a with another 2s atom on nuclei b will
contain the incident plane wave

φ2s(a)φ2s(b)ei�k· �R = 1√
2

(ξ+ + ξ−)ei�k· �R, (6)

where k is the translational wave number, and ξ± are molecular
eigenfunctions associated with the V±(R) potentials. The
molecular eigenfunctions tend to linear combinations of
atomic φ2sφ2s and φ2pφ2p product states as R → ∞, and the
incident wave function (6) evolves into

�( �R) ∼ 1√
2

(ξ+ + ξ−)ei�k· �R

+ 1√
2

[ξ+f (+)(θ,φ) + ξ−f (−)(θ,φ)]
eikR

R
, (7)

where

f (±)(θ ) = 1

2ik

∞∑
l=0

(2l + 1)(e2iδ
(±)
l − 1)Pl(cos θ ) (8)

is the amplitude for scattering through an angle θ by the
complex interaction potential V±. The complex phase shift
δ

(±)
l contains information about the ionization. The differential

cross sections for elastic scattering may be obtained from the
coefficient of the spherical wave part of the wave function (7)
by expressing the molecular eigenfunctions in terms of their
asymptotic atomic states. The result is [48]

dσ2s2s→2s2s

d�
= 1

4
|f (+)(θ,φ) + f (−)(θ,φ)|2, (9)

dσ2s2s→2p2p

d�
= 1

4
|f (+)(θ,φ) − f (−)(θ,φ)|2. (10)

It is assumed in this analysis that coupling to the single-
excitation transfer channel φ2sφ2p, which vanishes at leading
order in an expansion in inverse powers of R, may be neglected.
Recent investigations [51] have shown that significant nona-
diabatic coupling to φ2sφ2p may occur at higher order due
to the dipole-quadrupole interaction, and that this coupling
can have a significant effect on the cross sections at very
low energies [52]. In the present work, however, we consider
sufficiently high energies where the contribution from φ2sφ2p

coupling is expected to be small. We tested this assumption
for the lowest energies considered in this work and found no
significant change in the total ionization cross section when the
φ2sφ2p coupling is neglected. At this level of approximation,
the total ionization cross section may be obtained from Eqs. (9)
and (10) to be

σion = π

k2

∞∑
l=0

(2l + 1)
[
1 − A2

l

]
, (11)

A2
l =

∑
f

∣∣S(l)
if

∣∣2 = 1

2
(|A+

l |2 + |A−
l |2), (12)

where S
(l)
if is the scattering matrix connecting initial and final

channels for partial wave l. The absorption factors A±
l are

determined by the imaginary components of the complex phase
shifts δ

(±)
l and may be obtained by solving the Schrödinger

equation for the two potentials V±(R).
A “Langevin” model based only on the long-range part

of the potentials V±(R) is useful to gain insight into the
dynamics of the reaction. Ionization generally occurs when
the translational energy is greater than the potential energy
barrier. The long-range part of V+(R) repels the atoms so that
A+

l = 1 for all l. This immediately reduces the opacity by a
factor of two as may be readily seen from Eqs. (11) and (12).
The contribution from V−(R) may be estimated by considering
the effective potential

Veff(R) = l(l + 1)

2μR2
− C3

R3
, (13)

where μ is the reduced mass of the system. Differentiating
Veff with respect to R and setting it to zero yields the location
R0 and energy E = Veff(R0) of the barrier in terms of the
angular momentum. The opacity is expected to drop sharply
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at this value of angular momentum which allows a convenient
truncation of the sum in Eq. (11). Assuming a unit step function
opacity and dividing by two to account for the long-range
repulsive potential contribution yields the total ionization cross
section

σion = 3π

2

(
C3

2E

)2/3

∼ 23E−2/3 a.u. (14)

Previous calculations [48,50] have shown that the total
ionization cross sections for the 1�+

g and 3�+
u states are

23E−2/3 and 15E−2/3, respectively.
The above discussion may be modified to account for

identical nuclei by allowing the translational part of the
incident wave function to be 1√

2
[exp(i�k · �R) ± exp(−i�k · �R)],

which introduces a factor of 1√
2
[1 ± (−1)l] to the partial

wave scattering amplitude due to the rotational parity of
the Legendre polynomial Pl[cos(π − θ )] = (−1)lPl(cos θ ) in
Eq. (8). The total ionization cross section (11) is then modified
to

σion = π

2k2

∞∑
l=0

wl(2l + 1)[1 ± (−1)l]2
[
1 − A2

l

]
, (15)

where wl accounts for the nuclear spin statistics and the ±
signs are determined by the requirement that the total wave
function be antisymmetric under interchange of the nuclei.
Note that this ± is not related to the notation that was used
above to specify the V± potentials. In order to avoid confusion,
we remove the 1

2 [1 ± (−1)l]2 factor in Eq. (15) and write the
cross section as twice the sum over even or odd l. The choice
of even or odd and the statistical weights are determined by
the molecular symmetry of the potential used to compute the
opacity. For example, hydrogen atoms in a spin-polarized gas
would interact only through states of 3�+

u symmetry and have
wl = 1 for even l and wl = 0 for odd l. For a hydrogen gas
with a statistical mixture of nuclear spins, the cross sections
are

σS
ion = π

k2

(
1
4

∑
l=even

+ 3
4

∑
l=odd

)
(2l + 1)[1 − |A−

l (S)|2],

(16)

σT
ion = π

k2

(
3
4

∑
l=even

+ 1
4

∑
l=odd

)
(2l + 1)[1 − |A−

l (T )|2],

(17)

where the opacities are calculated using the complex V−(R)
potential with the appropriate 1�+

g or 3�+
u symmetry. The

electron spins introduce additional statistical weights so that
the total ionization cross section is given by

σion = 1
4σS

ion + 3
4σT

ion. (18)

The total ionization cross section computed from the direct
solution of the Schrödinger equation together with the unitarity
properties of the S-matrix must be equal to the sum of
the individual final state contributions. In the present work,
the individual contributions coming from associative and
Penning ionization are calculated from the solution to the

inhomogeneous differential equation[
− 1

2μ

d2

dR2
+ l(l + 1)

2μR2
+ V−(R) − E

]
ψl(R)

= χvj (R)

[
�(R)

2π

]1/2

, (19)

where χvj (R) is the rovibrational wave function of the discrete
state (or pseudostate) of the H2

+ molecule, and �(R) is the
autoionization width which is equal to twice the negative of
the imaginary part of V−(R). Energy conservation yields E =
k2
e /2 + εvj − 6.8 eV where ke is the electron momentum and

εvj is the rovibrational energy. The wave function is energy
normalized according to the asymptotic form

ψl(R) ∼
√

2μ

πk
eiδl sin

(
kr − lπ

2
+ δl

)
. (20)

If the 2s hydrogen atoms approach in the 1�+
g molecular state,

then the emitted electron must have even angular momentum,
and the transition will obey the selection rule j = l. If the
atoms approach in the 3�+

u state, then the emitted electron
must have odd angular momentum, and the transition will obey
the selection rule j = l ± 1 in order to preserve the overall
ungerade symmetry. Therefore, the cross sections are given by

σS
vj = 2π2

k2
wj (2j + 1)|〈ψj |�1/2|χvj 〉|2, (21)

σT
vj = 2π2

k2
wj [(j + 1)|〈ψj+1|�1/2|χvj 〉|2

+ j |〈ψj−1|�1/2|χvj 〉|2], (22)

where wj equals 1
4 for even j and 3

4 for odd j . We note that
the Eq. (22) is the same as that used by Bieniek and Dalgarno
[53] for the analogous problem of associative detachment in
collisions of H and H−. For a statistical mixture of singlet and
triplet molecular states, the associative and Penning ionization
cross sections are given by

σA =
jmax∑
j=0

nj∑
v=0

(
1

4
σS

vj + 3

4
σT

vj

)
, (23)

σP =
jmax∑
j=0

vmax∑
v=nj +1

(
1

4
σS

vj + 3

4
σT

vj

)
, (24)

where nj is the index of the last bound vibrational level for
the rotational level j . The dissociative continuum is described
by pseudostates with v > nj . The bound rovibrational wave
functions and the continuum pseudostates are obtained by
diagonalization of the H2

+ Hamiltonian in the orthonormal
Laguerre polynomial basis set

φl,n(R) =
√

an!

(n + 2l + 2)!
(aR)l+1 exp(−aR/2)L(2l+2)

n (aR).

(25)

The inhomogeneous differential Eq. (19) is solved using the
renormalized Numerov method [54]. The sum of σA and σP

computed using Eqs. (23) and (24) is compared with the total
cross section computed using Eq. (18).
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FIG. 1. (Color online) Potential curves used to compute the
ionization cross sections. The H(2s) + H(2s) potentials also have
imaginary components which were reported in [49].

III. RESULTS

The calculations were performed using the potential curves
shown in Fig. 1. The H(2s) + H(2s) curves were taken from
previous work [49,51] and the H2

+ curve was obtained from
the code of Aubert-Frecon et al. [55]. The repulsive wall
for the 3�+

u state occurs at a larger separation than that of
the 1�+

g state. Therefore, we would expect more efficient
ionization to occur for 2s atoms that approach on the 1�+

g

state. This expectation was observed in our calculations and
will be discussed in detail below.

Convergence tests were performed with respect to vmax,
jmax, and the Laguerre scale parameter a for both singlet and
triplet symmetries. Not surprisingly, the sensitivity to the scale
parameter a is much greater for Penning ionization than for
associative ionization. Figure 2 shows the scale dependence
for 1�+

g calculations for three collision energies. The Penning
ionization cross sections are stationary for a = 14 to 16, so
we chose a = 15 for the full calculations. Figure 3 shows
the convergence pattern of the j th partial cross section as
a function of j for the 1�+

g state at a collision energy of
0.001 a.u. The inhomogeneous curve was computed by solving
the inhomogeneous Schrödinger equation (19) followed by a
summation over both associative and Penning ionization con-
tributions for v � 50. Also shown is the homogeneous solution
to the Schrödinger equation which automatically includes both
ionization contributions. The plot shows that the two methods
of solution are in excellent agreement for large j . To bring
the small-j results to the same level of agreement requires
an increase in vmax. We have found that vmax = jmax = 100
produces converged results for the inhomogeneous problem
(as measured by the very good agreement of the summed cross
section compared with the homogeneous solution) for all of
the collision energies considered in this work.

The sharp drop in the partial cross section seen in Fig. 3 is a
general feature of ionization in collisions between metastable
hydrogen atoms. It occurs when the centrifugal barrier is large
enough to prevent the atoms from a close approach where
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FIG. 2. Penning ionization cross sections as a function of
Laguerre polynomial length scale a. The associative ionization cross
sections are numerically well converged for the range 10 < a < 30
and are not shown. The Penning cross section is stationary with
a = 15 for all energies considered in this work.

ionization can take place. The angular momentum where the
sharp decrease in the partial cross section occurs may be
estimated using the formula

j = (
54μ3C2

3E
)1/6

, (26)

which is obtained from the Langevin model. This equation
predicts that the sharp decrease will occur at j = 52 for E =
0.001 a.u., which is in good agreement with the location seen
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FIG. 3. (Color online) Total ionization cross section at E =
0.001 a.u. The inhomogeneous curve was computed by solving
Eq. (19) and adding the associative and Penning contributions for
v � 50. The homogeneous curve was computed by direct solution of
the Schrödinger equation. The convergence with v is generally slower
for small j . Increasing the upper limit to vmax = 100 brings the two
curves into excellent agreement for all j .
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FIG. 4. (Color online) Associative and Penning ionization cross
sections for H(2s) + H(2s) approaching on the 1�+

g state. Also
included is a curve fit (0.04E−1) to the associative ionization cross
section and a curve fit (23E−2/3) to the Penning ionization cross
section. These calculations include all contributions for vmax = 100
and jmax = 100.

in Fig. 3. The oscillatory behavior in the figure is due to the
nuclear spin statistical factor wj which depends on whether
j is even or odd. This factor also depends on the isotopic
partner assumed in the collision. In this work, we considered
metastable hydrogen and deuterium collisions. The results are
summarized below.

A. H(2s) + H(2s)

Figure 4 shows the associative and Penning ionization
cross sections for hydrogen atoms approaching on the 1�+

g

molecular state over a broad range of energies. Also shown
in the figure are energy-dependent fits to the theoretical data,
which are seen to be in good agreement. The E−1 dependence
of the associative ionization cross section follows directly
from the prefactor of Eq. (21). The E−2/3 dependence of the
Penning cross section shows that the exact numerical solution
to Eq. (19) agrees very well with the Langevin model (14) and
confirms that all atoms that cross the centrifugal barrier will
react.

The reaction probability is not unity when the centrifugal
barrier is surmounted for hydrogen atoms approaching on a
3�+

u molecular state. In this case, there are two separate terms
that contribute to Eq. (22), and in both cases, the probability for
ionization is reduced due to the location of the inner repulsive
wall (see Fig. 1). The energy dependence, however, continues
to follow E−1 and E−2/3 behavior for a wide range of energies
as shown in Fig. 5. Although the Penning cross section is
reduced for the 3�+

u case, both of the associative ionization
contributions to Eq. (22) are approximately equal, and their
sum is approximately the same as the cross section for the
1�+

g case.
For an unpolarized gas, a statistical mixture of singlet

and triplet molecular states is assumed which yield the cross
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FIG. 5. (Color online) Associative and Penning ionization cross
sections for H(2s) + H(2s) approaching on the 3�+

u state. Also
included is a curve fit (0.04E−1) to the associative ionization cross
section and a curve fit (14.4E−2/3) to the Penning ionization cross
section. These calculations include all contributions for vmax = 100
and jmax = 100.

sections given in Eqs. (23) and (24). The results are shown
in Fig. 6 along with the experimental data of Urbain et al.
[6] for associative ionization. The comparison shows that
our theoretical calculations are within a factor of two with
experiment at high energies and within a factor of four at the
lower energies considered. It is interesting that the discrepancy
between the present theory and experiment is approximately
the same as the one seen previously for the same system at
much lower energies [52].
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FIG. 6. (Color online) Associative (lower blue solid line) and
Penning (upper red solid line) ionization cross sections for unpolar-
ized H(2s) + H(2s) collisions. The experimental data are taken from
Urbain et al. [6] for associative ionization. All of the experimental
data lie within the dashed curves, which were obtained by dividing
our theoretical associative ionization cross sections by 2 and 4.
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FIG. 7. (Color online) Associative (lower blue curves) and Pen-
ning (upper red curves) ionization cross sections for D(2s) + D(2s)
collisions. Energy-dependent fits to the data are given in the legend
and plotted as solid lines on the graph.

B. D(2s) + D(2s)

For deuterium atoms, the nuclear spin statistical factor wj

equals 2
3 for even j and 1

3 for odd j . At thermal energies, this
difference in spin statistics compared to hydrogen atoms does
not have a significant effect. Figure 7 shows the associative
and Penning ionization cross sections for a pair of D(2s)
atoms. The Penning ionization cross section for D(2s) atoms
approaching on the 1�+

g state is identical to the result for H(2s).
These collisions are governed by the same conditions that
led to Eq. (14) where there is no reduced-mass dependence.
The Penning ionization for the 3�+

u state is larger than the
value for hydrogen but still less than the Langevin limit with
unit reaction probability. Unlike hydrogen, the associative
ionization cross section for the 3�+

u state of deuterium is
approximately two times larger than that of the 1�+

g state,
and both cross sections are smaller than their corresponding
values for hydrogen. The energy-dependent fitting functions
are included in the figure for each state.

C. H(2s) + D(2s)

Figure 8 shows the ionization cross sections for H(2s) +
D(2s) and again confirms that there is no reduced-mass
dependence in the Penning ionization cross section for the
1�+

g state. For the 3�+
u state, the Penning cross section lies

in between that of H(2s) + H(2s) and D(2s) + D(2s) and the
reduced-mass scaling was found to follow the approximate
formula

σP (μ) = σP (H2)

[
μ

μH2

]1/4

(27)

for 0.5 � μ � 1.5. The associative ionization cross sections
for the 3�+

u and 1�+
g states are nearly the same for H(2s) +

D(2s), similar to what was found for H(2s) + H(2s). The
magnitudes of the associative cross sections lie in between that
of H(2s) + H(2s) and D(2s) + D(2s), but unlike the Penning
cross section, they tend to decrease with increasing reduced
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FIG. 8. (Color online) Associative (lower blue curves) and Pen-
ning (upper red curves) ionization cross sections for H(2s) + D(2s)
collisions. Energy-dependent fits to the data are given in the legend
and plotted as solid lines on the graph.

mass. The ratio

R(μ) = σA(μ)

σA(H2)

[
μ

μH2

]3/2

(28)

was used to scale the associative ionization cross sections to
that of hydrogen. Figure 9 shows that the scaling ratio is a good
approximation to unity for the 1�+

g state but not for the 3�+
u

state. This observation shows that it is not possible to find a
reduced-mass scaling formula for the associative cross section
when the opacity deviates from a unit step function.
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FIG. 9. R(μ) versus μ for 1�+
g and 3�+

u states. These results
show that a reduce-mass scaling formula may be obtained for 1�+

g

but not for 3�+
u states.
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IV. SUMMARY

Associative and Penning ionization cross sections have
been calculated for H(2s) + H(2s), D(2s) + D(2s), and
H(2s) + D(2s) collisions at thermal energies. Excellent agree-
ment is found between the summed state-to-state cross sections
and the total cross section obtained from direct solution of the
Schrödinger equation. This agreement confirms the validity
of the closure approximation and justifies the use of the local
complex potential formulation for these collision partners. The
E−1 energy dependence of the associative ionization cross
section agrees with an existing experiment [6]. However,
the magnitude of our theoretical cross sections are found
to be about 2 to 4 times larger than the experimental data
over a wide range of energies. This discrepancy is consistent
with one seen previously at ultracold energies and suggests
that there may be a systematic oversight in the theoretical
formulation.

In an effort to uncover possible oversights in the theory,
we have reviewed in detail the coupled-states scattering
formulation that was used in our calculations. We have also
tested the assumption that the ionization is insensitive to
nonadiabatic radial coupling by expanding the basis set to
include the φ2sφ2p state. Consistent with previous calculations
at ultracold energies [52] we find some changes in the relative
contributions from the single- and double-excitation transfer
reactions (3) and (4) but no change in the total ionization cross
section. Inclusion of the fine structure and Lamb shift energy

defects also produced no significant changes at high energies.
Another possible source of the discrepancy is the neglect in
our calculations of the Coriolis interaction when solving the
Schrödinger equation in the body-fixed frame. Previous calcu-
lations [52] attempted to deal with this issue by transforming
from molecular gauge to atomic gauge where the uncalculated
nonadiabatic angular terms have the proper long-range falloff.
This procedure uncovered some sensitivity to short-range
radial couplings that are negligible within the coupled-states
approximation. Our expectation, however, is that Coriolis
coupling to the φ2sφ2s state should be weak and become even
less important with increasing energy. Figure 6 appears to
support the second part of our expectation as the discrepancy
changes from a factor of 4 at low energy to a factor of 2 at the
higher energies. This issue requires further investigation.

As a concluding remark, we note that our calculations pro-
vide detailed cross sections for the formation of H2

+(v,j ) for
all vibrational and rotational levels. If the theoretical formula-
tion is indeed responsible for the discrepancy discussed above,
it is possible that the relative state-selected cross sections may
still be reliable. If the ejected electron energy spectra could be
measured as in the case of metastable helium atom collisions
[35], then the theory given here could be further constrained.
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