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An analytic potential energy function is developed for simulating clusters and nanoparticles of aluminum
and its hydride. An embedded-atom method is used which modulates the background electron density as a
function of the number of nearest-neighbor atoms. Themethod is parametrized and tested using an extensive
training set computed from first-principle density-functional theory. The potential energy function is found
to be reliable for clusters of arbitrary size, shape, and composition ratio. The force field obtained from the
analytic potential energy function is computationally efficient and well suited for simulating large systems
of aluminum and aluminum hydride particles. A proposed molecular dynamics simulation related to
hydrogen-storage technologies for onboard automotive applications is briefly discussed.
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I. INTRODUCTION

There is growing interest in the use of hydrogen as an
energy carrier, as it permits an efficient utilization of energy
with zero emission of pollutants. Although much research
is dedicated to finding novel methods of materials-based
hydrogen storage through reversible physisorption or
chemisorption processes, none of the materials that have
been developed to date are able to meet the technical
requirements for effective onboard hydrogen storage for
vehicles [1]. Thus, most fuel cell vehicles powered by
hydrogen today adopt the method of pressurized hydrogen
storage using gas canisters which are generally composed
of aluminum due to its light weight and high tensile
strength. Light-duty vehicles normally contain 4 kg of
hydrogen gas at 70 MPa (288.15 K) with a volumetric
density of 40.2 g=l [2]. However, the embrittlement of
materials caused by hydrogen diffusion may occur over
time under these conditions, which can result in serious
safety issues and become detrimental to the hydrogen
economy. Because hydrogen is a colorless and odorless
gas with a wide range of ignition temperatures, a high-
pressure hydrogen gas leak can go undetected and cause a
particularly exothermic explosion. Despite reinforcements
of the aluminum canisters via an aluminum oxide coating,

there may remain defective sites in the aluminum canisters
that are prone to pitting attack by hydrogen. It is desirable,
therefore, to develop robust and reliable means of safety
evaluation for storage of high-pressure hydrogen within
these canisters.
Molecular dynamics (MD) simulations can be used to

investigate the interactions between hydrogen and alumi-
num surfaces and may provide an understanding of the
mechanisms which lead to embrittlement. MD simulations
generally rely on an atomic force field (FF) which is
obtained as gradients of a potential energy function (PEF)
that contain all relevant information of the atomic inter-
actions for the system. First-principle electronic structure-
based simulations are computationally challenging for
systems which contain a large number of atoms, so it is
often necessary to employ a model PEF which is analytic
and transferable to clusters and nanoparticles of arbitrary
sizes and shapes. The reliability of the model PEF depends
on its ability to capture the essential bonding behavior
and on the accuracy of the model parameters which are
determined by theoretical or experimental data.
Embedded-atom (EA) methods based on density-

functional theory (DFT) are commonly used to model
atomic bonding in metallic systems. These methods are
successfully applied to bulk metals [3–5] and in some cases
are extended to metallic clusters and nanoparticles [6–9].
Although Al canister embrittlement for hydrogen storage is
largely a defect problem in bulk Al, it is unlikely that a
PEF fit to bulk Al will be accurate for performing the
kind of safety studies envisioned here. Furthermore,
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parametrization of a PEF using bulk data may lead to
significant errors for the binding energies of small clusters
and nanoparticles [10–13] which typically experience
different local environments than their bulk counterparts.
Since material formation processes may involve the coa-
lescence of small clusters and nanostructures, it is generally
desirable to develop analytic PEFs that are capable of
describing clusters and nanoparticles of all sizes and
shapes. Whereas aluminum clusters and nanoparticles have
been investigated through first-principle calculations by
various researchers [12–20], studies of binary compounds
such as aluminum hydrides are less numerous. One
important study [21] introduces a new valence-bond order
(VBO) approach for modeling reactive potential energy
surfaces. The VBO method is related to an EA method, and
the initial application of the method to aluminum hydrides
contains no explicit dependence on the bond angle or
Coulombic terms in order to test and develop a simple
functional form which would be well suited for large-scale
simulations. Likewise, one of the motivations of the present
study is to investigate the interactions between aluminum
and hydrogen in the formation of aluminum hydrides so as
to characterize and develop a general PEF form that
properly accounts for both covalent and metallic bonding
interactions. As in the previous study [21], the starting
point for this investigation is to compute the energies for a
large set of stable and metastable aluminum and aluminum
hydride structures using first-principle DFT. These struc-
tures may then be used as a training set for determining the
model parameters and testing the reliability of the FF for a
variety of conditions.

II. DFT CALCULATIONS

The calculations for the ab initio energies for many
different cluster sizes of aluminum are performed using
DFT under the generalized gradients approximation with
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [22] as implemented in the DMOL3 package
[23,24]. The electronic structure calculations are done
using a double numerical atomic basis set augmented with
a polarization function for valence electrons and an
effective core potential to represent the core electrons.
To test the accuracy of the chosen DFT method, the hybrid
M06 functional [25] with the 6-311þþGðd; pÞ basis set
as implemented in the GAUSSIAN09 package [26] is used
to reoptimize the structures of several selected aluminum
and aluminum hydride clusters. Comparison of the calcu-
lated average binding energies and the structural parameters
obtained from the two DFT methods suggests that the
difference is marginal (see the Supplemental Material [27]).
The energy and gradient convergence tolerance is chosen
to be 1 × 10−7 Ha (hartree) and 2 × 10−3 Ha=Å, respec-
tively. The global orbital cutoff is set to 8.0 Å. A
spin-polarized scheme is employed to deal with the
electronically open-shell systems intrinsic to the Al atoms.

All structures are fully optimized using the conjugate
gradient algorithm without symmetry constraints.
An initial set of structures is generated by considering a

variety of possible configurations with a small number of
aluminum atoms in the cluster. The minimum energy
structure for each subsequent cluster size is systematically
determined by adding one atom to every possible site of the
lowest-energy structures of the previous cluster size. The
new atom is introduced only to regions that permitted
the new atom to have three to five neighboring atoms, as
well as a bond length of 1.5–3 Å away. This operation of
sequentially adding one atom each time to generate clusters
and then finding their ab initio energies is performed up to a
cluster size of 30 aluminum atoms. Many of the new
structures obtained as intermediate steps in the optimization
procedure are introduced to the training set as well.
As the methodology involves the growth of aluminum

clusters by stepwise addition to the most stable configu-
ration of a smaller cluster, it is critical to determine the
reliability of the method of cluster generation by comparing
small clusters to the available literature. Ojwang et al. [19]
found that Al4 clusters typically form a rhombus confor-
mation (D2h), as compared to the pyramidal conformations
(C3v) proposed by Pettersson et al. [15]. The DFT
calculations performed in this paper yield a small energy
difference of −0.34 eV (5.1%) between the two configu-
rations with the rhombus conformation being preferred and
used for subsequent cluster generation. The optimized Al5
cluster suggests that a two-dimensional structure continues
to be the most stable, which is somewhat in line with the
planar form found by Pettersson et al. [15], Yang et al. [17],
and Ojwang et al. [19], whereas the three-dimensional
structure proposed by Jug [16] suggests that a pyramidal
form is the most stable. The energy difference between the
two structures is small, implying that degeneracy might be
observed between the two structures. The consensus of
the above authors for Al6 was an octahedral structure,
although Upton [14] suggested a slightly distorted octahe-
dral structure. The structure optimized via DFT calculations
is a distorted octahedral as well. For Al7, the most stable
structure we obtain in the present work is a capped triagonal
antiprism similar to Ojwang’s structure. Böyükata and
Güvenç [18] found the pentagonal bipyramid structure
to be more stable by a small energy difference of
2.3 kcal=mol. The pentagonal bipyramid structure is not
obtained by the sequential addition of atoms to a distorted
Al6 structure but is considered separately, and the differ-
ence in energy is found to be small between the two
structures.
For Al13, the structure we obtain from DFT optimization

indicates that the lowest-energy configuration appears
to adopt Ih symmetry. This is consistent with Wang and
Zhao [20] who used the same functional and correlation
parametrization. However, Wang and Zhao also reported
that a nonsymmetric C1 configuration was found to be
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energetically competitive with the Ih structure, and the
energy sequence depended on the choice of the exchange-
correlation functionals. In general, the HF method or
functionals with LYP correlation parametrization (BLYP,
B3LYP, X3LYP) prefer the C1 isomer, while the Ih isomer
is recognized as the lowest-energy structure by those
functionals with Perdew’s correlation parametrization, such
as PW91, PBE, PBEO, B3PW91 [20]. These results imply
that the theoretical lowest-energy structure of the atomic
cluster is dependent on the choice of functional; however,
the differences in the calculation of the binding energy for
each cluster are small. PBE is chosen for this project as its
ionization potentials, electron affinities, and bond lengths
are of an accuracy similar to those obtained from empirical
functionals, and it gives an accuracy comparable to the
frequently used empirical B3LYP hybrid scheme [28]. All
of the configurations calculated with the PBE exchange-
correlation functional (both equilibrium and nonequili-
brium structures) are included for the parametrization of
the force field, which includes the Ih and C1 structures.
Larger cluster sizes are optimized and added to the

training set such as hollow and solid spherical clusters in
face-centered cubic (fcc) formation, bulk clusters with
periodic boundary conditions, and randomly chosen inter-
mediate-size clusters. The sequential addition of hydrogen
atoms to small aluminum clusters is performed via a similar
method. Hydrogen atoms are loaded onto minimum energy
aluminum clusters until saturation, defined to be the point
where hydrogen molecules form, is reached. The full
aluminum hydride cluster is optimized for each new
addition of hydrogen. Different loading sites are considered
and have a strong influence on the relaxation of the
underlying aluminum cage for small clusters. The DFT
training set of aluminum and aluminum hydride structures
is then used to determine the parameters of the model PEF
as described below.

III. MODEL

The general form of an embedded-atom PEF is given by

E ¼
X
i

�
1

2

X
j≠i

VðrijÞ þ FiðρiÞ
�
; ð1Þ

where VðrÞ is an effective two-body interaction, and Fi
is an energy functional that depends on the background
electron density ρi at site i. Generally, this energy func-
tional represents the energy required to embed an atom into
the background and, therefore, accounts for many-body
effects. The pair potential and embedding functions are not
unique, and it is sometimes convenient to define a reference
structure for atom i by renormalizing the background
density with respect to the number of nearest neighbors
[6]. In the present work, we normalize the background
electron density with respect to a numerically determined

function of the number of nearest neighbors. For aluminum
hydride, we demonstrate the utility of this method by
considering EA PEFs of the form

E ¼
XN
i¼1

di

�
1

2

X
j≠i

DIJΦ
ðRÞ
IJ ðrijÞ − ciρi1=2

�
; ð2Þ

where I is the type of atom at site i. We choose the
convention I ¼ 1 for aluminum atoms and I ¼ 2 for
hydrogen atoms. The square root of the densitylike quantity

ρi ¼
X
j≠i

ΦðAÞ
IJ ðrijÞ½δI1δIJ þ δI2� ð3Þ

provides the embedding function that accounts for the
many-body effects. The δI1δIJ term in Eq. (3) is used to
model monatomic aluminum clusters, and the δI2 term is
used to correct the model when hydrogen is present. The
attractive and repulsive pair potentials ΦðAÞ

IJ and ΦðRÞ
IJ are

assumed to be universal for all clusters. Parametrization
of an EA PEF using bulk data, however, may yield poor
performance for small clusters [10–13]. The variation of
metallic bonds for different cluster sizes and shapes is
typically too large to be adequately described by a fixed set
of pair parameters and constant coefficients ci and di. To
overcome this difficulty, parameters that depend on the
local environment are used in a Morse-type PEF [10] and in
an EA-type PEF [11], and the agreement with ab initioDFT
calculations is greatly improved. This additional flexibility,
however, requires a large number of parameters and
introduces small discontinuities in the force field for atomic
configurations which are far from equilibrium. Here, we
modify the approach taken in Ref. [11] and find good
agreement with DFT results using a reduced set of param-
eters. The modified approach also provides continuity of the
force field and its derivative for all possible configurations.
In this method, the coefficients ci and di are the only
parameters that are allowed to depend on the number of
nearest neighbors. The variation of these coefficients is
equivalent to renormalizing the background density as
described above. The force may then be calculated analyti-
cally from the EA PEF using

Fxi ¼ − ∂E
∂xi

¼ − 1

2

X
j≠i

�
ðdi þ djÞDIJ

∂ΦðRÞ
IJ

∂rij − cidiρi−1=2
∂ρi
∂rij

− cjdjρj−1=2
∂ρj
∂rij

� ∂rij
∂xi

þ
XN
j¼1

�∂ðcjdjÞ
∂xi ρj

1=2 − 1

2

X
k≠j

DJKΦ
ðRÞ
JK

∂dj
∂xi

�
. ð4Þ
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The last term in Eq. (4) is zero for conventional EA
methods which use constant coefficients. Because EA
methods generally perform well for large clusters and bulk
systems, this last term should tend to zero as the number of
nearest neighbors increases to the bulk limit. However,
when the number of nearest neighbors is small, this term
may be used to improve the accuracy of the force field.
The computational effort required to calculate the force

field may be reduced by eliminating large-distance con-
tributions using the definitions

ΦðRÞ
IJ ðrijÞ≡ fcðrijÞVðRÞ

IJ ðrijÞ; ð5Þ

ΦðAÞ
IJ ðrijÞ≡ fcðrijÞVðAÞ

IJ ðrijÞ; ð6Þ

where fC is a smooth cutoff function. Following Ref. [6],
we use

fa;bðrÞ ¼

8>>><
>>>:

1; r ≤ a
1
2
ð1þ xÞ − 5

8
xðx2 − 1Þ

þ 3
16
xðx4 − 1Þ; a ≤ r ≤ b

0; r ≥ b;

ð7Þ

with

x ¼ 2r − a − b
a − b

: ð8Þ

The function fa;bðrÞ has vanishing first and second
derivatives at the connection points r ¼ a and r ¼ b.
For aluminum clusters, we find it convenient to use
fcðrijÞ ¼ f3;7ðrijÞ for all pair interactions. This choice
of cutoff function preserves the diatomic well and provides
a smooth falloff which is built into the functional form
of the pair potentials. The cutoff distance b ¼ 7 is shown
[12] to introduce negligible error for aluminum clusters.
The analytic function fa;bðrÞ is also used to compute
coordination numbers Mi and Ni for an atom i from the
definition

X
j≠i

fa;bðrijÞ≡
�
Mi; I ¼ J

Ni; I ≠ J
; ð9Þ

which allows the number of neighboring atoms to be
counted with a weighting that depends on the distance.
In Eq. (9), the choice b ¼ 7 is used in order to be consistent
with the cutoff function. However, the choice a ¼ 5 is
made so that rescaling the background electron density
does not interfere with many-body effects which are
already accounted for by the embedding function.
Equation (7) is then further used to define the smooth step
function

SnðxÞ ¼ 1 − fn;nþ1ðxÞ; ð10Þ

which facilitates the variation of the coefficients in the EA
PEF (2) when x ¼ Mi (see Fig. 1). For aluminum hydride
clusters, we use

ci ¼ ½C0S0ðMiÞ þ
X10
n¼1

ðCn − Cn−1ÞSnðMiÞ�δI1

þ ½A0S0ðMiÞ þ B0S0ðNiÞ þ B1S1ðNiÞ
þ B2S0ðMiÞS0ðNiÞ þ B3S0ðMiÞS1ðNiÞ
þ B4S1ðMiÞS0ðNiÞ þ B5S1ðMiÞS1ðNiÞ
þ B6S0ðMiÞS2ðNiÞ þ B7S1ðMiÞS2ðNiÞ
þ B8S2ðMiÞS2ðNiÞ þ B9S4ðMiÞS2ðNiÞ
þ B10S6ðMiÞS2ðNiÞ�δI2 ð11Þ

and di ¼ DðIÞ
0 . The series of smooth steps effectively

interpolates ci from diatomic molecule parameters A0,
B0, and C0 to the polyatomic cluster parameters Bn and
Cn for n > 0. In this work, the coefficient di is held
constant, which simplifies the force field and allows all
small cluster renormalizations to be handled by the
positive-definite coefficient ci of the attractive many-body
contribution. For bare aluminum clusters, ci ¼ C10 when-
ever atom i has 11 or more neighbors within a radius of 5 Å.
We find that this is sufficient to obtain a good description
of all clusters sizes, including the fcc bulk limit.
For pure hydrogen, the H atoms prefer to form H2 pairs,

so the many-body effects are less important than in the
case of pure aluminum. Therefore, the ci parameter in
Eq. (11) may be assumed to be the constant value A0

without modification when there is no aluminum present.
The Bn parameters allow the coefficient ci to depend on
both the number and type of nearest neighbors. The number
of step functions shown in Eq. (11) may be increased (or
decreased) in order to provide more (or less) flexibility, as
desired. In the present work, the many-body renormaliza-
tions are handled by the 20 parameters Bn and Cn for
n ¼ 1–10. The parameters A0, B0, and C0 are fixed by the

FIG. 1. Series of smooth step functions used to rescale the
coefficient ci for atoms with fewer than six nearest neighbors.
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pair potentials. Two examples of the attractive and repul-

sive pair potentials VðAÞ
IJ and VðRÞ

IJ are considered below.

A. Example 1: QSC EA PEF

The quantum Sutton-Chen [29] (QSC) method uses pair
potentials of the form

VðRÞ
IJ ðrijÞ ¼

�
αIJ
rij

�
pIJ

and VðAÞ
IJ ðrijÞ ¼

�
αIJ
rij

�
qIJ
.

The parametersA0,B0,C0,D0, andD12may be computed
by setting the force equal to zero for the homonuclear and
heteronuclear diatomic cases. The result is

A0 ¼ D22

�
p22

q22

��
α22
r�22

�
p22−q22=2

; ð12Þ

B0 ¼
Dð1Þ

0 þDð2Þ
0

Dð2Þ
0

D12

�
p12

q12

��
α12
r�12

�
p12−q12=2

; ð13Þ

C0 ¼ D11

�
p11

q11

��
α11
r�11

�
p11−q11=2

; ð14Þ

DðIÞ
0 ¼ E�

II

DII

�
αII
r�II

�−pII
�
1 − 2pII

qII

�−1
; ð15Þ

D12 ¼
2E�

12

Dð1Þ
0 þDð2Þ

0

�
α12
r�12

�−p12

�
1 − 2p12

q12

�−1
; ð16Þ

where r�IJ is the equilibrium distance, and E�
IJ is the

dissociation energy for the pair interaction between atoms
of types I and J. The pair parameters are symmetric with
respect to I and J, and DII ≡ 1. Equations (12)–(16) show
that the three diatomicmolecules (two homonuclear and one
heteronuclear) depend on the nine fitting parameters
fαIJ; pIJ; qIJg. These parameters are determined together
with Bn and Cn for n > 0 by simultaneously fitting the
energies for the whole set of cluster sizes and shapes as
described in the next section.

B. Example 2: Exponential EA PEF

An exponential EA method may be defined by the pair
potentials

VðRÞ
IJ ðrijÞ ¼ exp

�
− rij
αIJ

�
pIJ

and

VðAÞ
IJ ðrijÞ ¼ exp

�
− rij
αIJ

�
qIJ
:

ð17Þ

As above, the force is set equal to zero for the
homonuclear and heteronuclear diatomic cases. The result
is the same upon making the substitution

αIJ
r�IJ

→ exp

�
− r�IJ
αIJ

�
ð18Þ

in Eqs. (12)–(16). Again, nine symmetric pair parameters
fαIJ; pIJ; qIJg are determined together with Bn and Cn for
n > 0 by simultaneously fitting the energies for the whole
training set of cluster sizes and shapes.

IV. RESULTS

For each aluminum cluster, the average binding energy
per atom is calculated as

Ebinding ¼ ½EðAlnÞ − nEðAlÞ�=n; ð19Þ

where EðAlnÞ is the energy of the entire cluster and EðAlÞ
is the energy of a single aluminum atom. Figure 2 shows
the result for the diatomic molecule. The present DFT
results reproduce the well-known [30,31] double-well
structure which arises from the crossing of the 3Πu and
3
P−

g electronic states. The EA PEF depends on the choice
of r�11 and E�

11 as described above. Therefore, we try three
alternative choices for these parameters: (i) fitting to the
3
P−

g inner well, (ii) fitting to the 3Πu outer well, and
(iii) fitting to a single smooth well which lies in between the
two actual wells. This last alternative, which is consistent
with the choice made by Jasper et al. [12], provides a
broader well due to the repulsive and attractive sides of
the well being taken from the two different electronic
symmetries. In our attempts to find a PEF which describes

FIG. 2. Diatomic Al2 potential. The points are DFT calculations
which show the expected double-well structure [25,26]. The red
curve corresponds to the exponential EA PEF, and the blue curve
corresponds to the QSC EA PEF. Both models are constrained by
the equilibrium parameters of the inner well. The nonequilibrium
behavior is determined by the best fit to the whole training set of
aluminum cluster sizes and shapes.
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all aluminum cluster sizes and shapes, we find that
alternative (i) works the best. Furthermore, although both
of the EA PEFs considered in the present work are able to
perfectly fit the repulsive and attractive sides of the inner
well when only two atoms are included in the training set,
our best results are obtained for all cluster sizes and shapes
when the sides of the diatomic well are shifted (see figure).
Interestingly, the QSC EA model gives a narrower well
compared to the DFT data, whereas the exponential EA
model gives a broader well. This is due to the smoother
behavior of the exponential function in the transformation
(18) as the distance approaches zero. The errors associated
with the neglected double-well structure and the narrowing
or broadening of the inner diatomic well are not expected
to be important for molecular dynamics simulations. In
both models, any diatomic molecules that break off from a
large aluminum cluster will settle down to the equilibrium
separation of the inner well, which yields an energy that is
close to the accepted value.
To find the most stable structures for larger clusters,

aluminum atoms are added sequentially to the stable
clusters of the previous size starting with the diatomic
molecule. As noted above, aluminum clusters are found to
form three-dimensional structures with a size of six or
greater. There is no noticeable pattern of cluster growth,
and the aluminum structures generated for larger cluster
sizes typically lack any high-order symmetry. The mini-
mum energy structures that we find in the present work are
shown in Fig. 3. These results are in contrast to the more

symmetric structures found by Li et al. [32]. Whereas the
sequential addition method is the primary method used for
cluster generation in the present work, the methods used in
Ref. [32] consist of the big bang (BB) searching algorithm
[33] as well as the molecular dynamics simulation and
quenching method (MDSQ). Both the BB and MDSQ
methods [32] employ the NP-B [13] potential, which
assumes that the electronic energy is separable and the
average electronic excitation energy is independent of
cluster size as well as isomer.
The set of minimum energy aluminum structures shown

in Fig. 3 is augmented with a large number of non-
equilibrium configurations of various sizes and shapes to
form a training set for constraining the model FF. The
monatomic aluminum parameters are obtained by comput-
ing the function

fðNÞ ¼
PMN

m wmjEDFT
m − EFF

m j
N
PMN

m wm

; ð20Þ

whereMN is the number of cluster configurations of sizeN,
and EDFT

m and EFF
m are the respective DFT and model FF

energies for the mth configuration. The weight function is
chosen to be the absolute value of the DFTenergy per atom.
This weighting emphasizes the lowest-energy equilibrium
structures without significantly neglecting the nonequili-
brium structures and metastable isomers. Higher-energy
structures are also fairly well described in most cases using

FIG. 3. Minimum energy structures for aluminum clusters computed by DFT.
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this procedure. All cluster sizes are trained simultaneously
by minimizing the function

g ¼
PNmax

N NfðNÞPNmax
N N

: ð21Þ

The size-dependent weighting in Eq. (21) helps to ensure
an appropriate limit as cluster sizes approach the bulk.
The minimization is performed by repeated use of a quasi-
Newton algorithm in a general descent method with
gradient values computed by finite differencing. Each
application of the algorithm allows up to 200 iterations
to obtain a local minimum for g. The parameters are
defined so that a parameter P is updated by computing
Pnew ¼ Pold þ expð−jxjÞ, where x is the optimal value
which yields the local minimum, and Pold equals the
previous best value minus a small offset. This procedure
allows Pold − offset ≤ Pnew ≤ Pold þ 1, which enables
deeper local minima to be searched for with each new
application of the algorithm. There is no guarantee that
this approach will locate a global minimum; however, it is
generally reliable for finding a set of parameters which
satisfy the criteria that g ≪ 1 for a well-designed PEF.
Following Jasper et al. [12], the bulk cohesive energy Eb

is approximated for a given lattice constant a by computing
the function

EbðaÞ ¼
N1=3

1 QN1
ðaÞ − N1=3

2 QN2
ðaÞ

N1=3
1 − N1=3

2

; ð22Þ

where QNðaÞ is the cohesive energy for N atoms in a large
cubic structure comprised of several fcc unit cells in each
direction. The unsigned error in the bulk cohesive energy

ϵb ¼ 1
2
½jEbðamÞ − Ee

bj þ jEbðaeÞ − Ee
bj� ð23Þ

is added to Eq. (21) prior to performing the minimization.
In Eq. (23), the label e refers to the experimental value,
and the label m refers to the lattice constant, which gives
the minimum bulk cohesive energy when computed using
Eq. (22). To allow the calculation of ϵb to be performed
quickly during the minimization, we follow the method of
Ref. [12] and fit EbðaÞ to a quadratic form using three
different values of a (0.9ae, 1.0 ae, 1.1ae). The experi-
mental values are 4.022 Å for the lattice constant and
−3.43 eV=atom for the cohesive energy [12]. Our DFT

calculations with periodic boundary conditions give a
lattice constant of 4.0495 Å and a cohesive energy of
−3.474 eV=atom, which are both in good agreement with
the experimental numbers. For consistency of our training
set, we replace the experimental numbers in Eq. (23) with
our DFT values. This procedure results in a lattice constant
of 3.9077 Å and cohesive energy of 3.473 94 eV=atom for
the QSC PEF, and a lattice constant of 4.0447 Å and
cohesive energy of 3.473 96 eV=atom for the exponential
EA PEF.
After the PEF is trained to fit the DFT data, the PEF is

used to compute energy minima using all structures in the
DFT training set as starting points for the optimization.
This is a critical step in establishing the reliability of the FF,
as it is not uncommon to obtain a PEF which provides a
good fit to a limited set of DFT data but produces energy
minima that are well below expectations. Typically, this
occurs when the DFT training set does not include enough
nonequilibrium structures with compressed bonds. In such
cases, the DFT training set is updated to include the
minimum energy structures obtained by the PEF and a
retraining is performed. The final set of parameters are
given in Tables I and II for both the QSC EA PEF and
exponential EA PEF considered in this work. Figure 4
compares the average error per atom for the two types of
PEFs as a function of cluster size N. Both models perform
well for small N due to the rescaling of the attractive
coefficient ci in Eq. (11). However, both models yield
minimum energy structures for N ¼ 4 and N ¼ 5 that are
three dimensional, whereas the DFT calculations yield

TABLE I. Pair parameters for the EA PEFs.

Type QSC Exponential Diatomic

I J αIJ pIJ qIJ αIJ pIJ qIJ r�IJ E�
IJ

1 1 2.829 46 13.429 59 6.635 43 2.559 34 7.090 26 3.217 35 2.513 −1.662
2 2 1.842 57 2.389 50 3.477 97 1.175 46 3.910 62 5.952 33 0.750 −4.547
1 2 2.391 65 6.926 77 4.703 47 3.619 80 11.173 93 10.536 84 1.685 −3.098

TABLE II. Parameters for rescaling the many-body
coefficient ci.

QSC Exponential

n Bn Cn Bn Cn

1 −0.253 39 8.036 34 −0.015 30 0.012 09
2 −1.446 51 8.542 92 −0.384 34 0.012 63
3 0.260 37 9.354 15 0.016 13 0.013 71
4 0.128 56 9.442 04 0.007 33 0.013 29
5 0.124 26 9.722 82 0.001 43 0.013 96
6 0.012 74 9.707 57 0.002 46 0.013 81
7 −0.193 90 9.772 44 −0.011 17 0.013 90
8 −0.048 00 10.293 87 0.000 77 0.014 35
9 0.118 40 10.293 71 0.005 60 0.014 35
10 0.207 32 10.374 58 0.001 93 0.014 35

ANALYTIC FORCE FIELD FOR CLUSTERS AND … PHYS. REV. APPLIED 1, 054004 (2014)

054004-7



planar structures (see Fig. 3). In general, the optimized
structures we obtain by the model PEFs tend to be more
symmetric than those we obtain by the DFT calculations.
Both models are able to keep the average error per atom
below 0.10 eV for all cluster sizes and below 0.05 eV in
most cases. The exponential EA PEF performs better than
the QSC EA PEF, in agreement with previous observations
[12]. Table II shows that C8 ¼ C9 ¼ C10 for the exponen-
tial EA PEF, which indicates thatC9 andC10 are not needed
for this case. The mean unsigned error (MUE) for the QSC
EA PEF is 0.041 eV=atom when the entire training set
of clusters for N ≤ 60 is used, but it increases to
0.068 eV=atom when the bulk error ϵb is included. For
the exponential EA PEF, the bulk error is negligible, and
the MUE is 0.035 eV=atom.
The parameters of the model aluminum hydride FF are

determined by considering monatomic aluminum and
hydrogen clusters in a first step. The parameters for the
monatomic hydrogen FF are obtained using a training set
consisting of different configurations of two and three
hydrogen atoms whose energies were computed using
DFT. Because H atoms prefer to form H2 pairs, it is not
necessary to include hydrogen clusters with more than three
atoms in this training set. The second training step utilizes
the monatomic parameters that are obtained in the first step.
This step follows the minimization procedure described
above, but now with a training set of binary clusters which
consists of different configurations of AlmHn with the
combinations (m ¼ 1, n ¼ 1–4), (m ¼ 2, n ¼ 1–8),
(m ¼ 3, n ¼ 1–8), (m ¼ 4, n ¼ 1–12), (m ¼ 6,
n ¼ 1–18), and (m ¼ 8, n ¼ 1–24) whose energies were,
again, computed using DFT. Figure 5 compares the average
error per atom for the two types of PEFs as a function of
cluster size N ¼ mþ n. The figure shows that the perfor-
mance of the exponential EA PEF is now substantially
better than the QSC EA PEF. Presumably, this is due to the

smoother behavior of the exponential function compared to
the inverse power law behavior which allows for broader
wells in the aluminum hydride potential energy surface.
The MUE for the exponential EA PEF is found to be
0.044 eV=atom when the full set of aluminum hydride
clusters is used. The MUE for the QSC EA PEF is
0.22 eV=atom. This is clearly an unacceptably high
error—the parameters for this model are given in the tables
for comparison purposes only. It is recommended that only
the exponential EA PEF be considered for use in molecular
dynamics simulations that include hydrides. It is also
noteworthy that the MUE for the VBO method [21] is
found to be 0.1 eV=atom. Therefore, the exponential EA
PEF appears to be the most reliable; however, the training
set (and definition of MUE) are different in the two studies,
so it is not possible to make this claim with certainty.
Figure 6 shows the diatomic potentials for AlH and H2.

The points are DFT calculations and the red curves
correspond to the exponential EA PEF, which gives the
best fit to the whole training set of cluster sizes and shapes.
In both cases, the equilibrium position and well depth are
fixed at the values obtained from the DFT calculations. The
figure shows the model PEF for AlH is slightly narrower
than the DFT results. The model PEF for H2 shows a better
fit to the DFT data in the well region but falls off more
slowly with distance. The exact H2 potential [34], which is
shown in the figure for comparison, shows a deeper well
than the results of the DFT calculation. For consistency, we
use the DFT data in the training of the model FF.
Figure 7 shows the most stable structures for AlH3 and

Al2H6 that we obtain from DFT calculations and from the
exponential EA PEF model. The planar AlH3 molecule
found in our DFT calculation agrees with the experimental
structure found [35] at low temperature in a solid noble
gas matrix. The same structure is obtained using the
exponential EA PEF but with a slightly longer Al-H bond

FIG. 4. Average error per atom as a function of Al cluster size.
The left (blue) bars correspond to the QSC EA PEF, and the right
(red) bars correspond to the exponential EA PEF. The error is
computed by comparison with a DFT training set of bare
aluminum clusters.

FIG. 5. Average error per atom as a function of AlmHn cluster
size N ¼ mþ n. The left (blue) bars correspond to the QSC EA
PEF, and the right (red) bars correspond to the exponential EA
PEF. The error is computed by comparison with a DFT training
set of aluminum hydride clusters.
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length. For Al2H6, a similar increase of the Al-H bonds
and also a decrease in the Al-Al bond are observed in the
model PEF result. The structure of minimum energy
cluster, however, remains the same.
In order to investigate the interaction of hydrogen and

aluminum, small aluminum clusters are chosen. Al6 and
Al8 are the smallest clusters that offer a high degree of
symmetry, which permits any structural change to be easily
observed and compared. Initial addition of H2 to Al6 occurs
along the overlap of the HOMO of aluminum and the
LUMO of the hydrogen molecule [see Fig. 8(a)], implying
a charge transfer from Al6. Various configurations are
obtained for Al6H2, but the addition generally occurs along

a corner of the Al6 structure. The most stable configuration
is shown in Fig. 8(b). Geometry optimization of oppositely
placed hydrogen atoms for Al6H2 also results in a structure
that has adjacent hydrogen. This suggests that the addition
must involve the right symmetry of LUMO and HOMO and
that the subsequent migration of the hydrogen atoms to the
most stable configuration is favorable after the addition to
the cage. The most stable configuration that we obtain by
the model FF is shown in Fig. 8(c). The structure is, again,
similar to the one we obtain by DFT but with slightly
shifted bond lengths. The most stable structures from the
first addition of H2 to Al8 found by DFT and the model FF
are also illustrated in Figs. 8(b) and 8(c). The aluminum
cage appears similar for the two calculations; however, the
structure we find by the model FF shows H atoms bonded
to three Al atoms, whereas the DFT result shows only two
such bonds with a weak third bond between the H atoms

FIG. 6. Diatomic potentials for (a) AlH and (b) H2. The points are DFT calculations, and the red curve corresponds to the exponential
EA PEF which gives the best fit to the whole training set of cluster sizes and shapes. The exact potential for H2 (blue curve) shows a
slightly deeper well than the result of the DFT calculation.

FIG. 7. Minimum energy structures for AlH3 and Al2H6

clusters: (a) results from DFT calculation; (b) results from
exponential EA PEF model.

FIG. 8. (a) HOMO of Al6 and Al8 and LUMO of H2; (b) most
stablehydrides fromfirst additionofH2 computedbyDFT; (c)most
stable hydrides from first addition of H2 computed by FF.
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themselves. We do not consider this type of discrepancy to
be a serious limitation of the model. There are many nearly
degenerate aluminum hydride structures, and it is to be
expected that there will be small discrepancies between the
model and the exact results.
The addition of hydrogen to Al6H2 to form Al6H4 results

in a distortion of the original structure when computed with
DFT. This is shown in Fig. 9. The model FF does not
predict the structure change obtained by DFT but instead
simply attaches each of the four H atoms to three Al atoms
of the original aluminum cage. The agreement is better for

the addition of hydrogen to Al8H2 to form Al8H4, which is
also shown in Fig. 9. In this case, the original aluminum
cage is maintained, and the four H atoms are each attached
to two Al atoms at the ends of the cluster. The subsequent
addition of hydrogen to Al6H4 and Al8H4 results in further
distortion of the octahedral structures. Beyond the initial
addition of H2 to form Al6H2 and Al8H2, it is difficult to
discern any pattern of hydrogen addition, as similarities in
terms of structural geometry can no longer be observed
between the two clusters due to the different ways that the
structures can be distorted. The most stable aluminum
hydride structures are found, in general, to consist of a
distortion of the initial aluminum cage with the attached
hydrogen atoms spaced out as much as possible. As noted
above, there are many nearly degenerate aluminum hydride
structures. A sample of these isomers is included in the
Supplemental Material [27].
The density of states of the aluminum hydride clusters is

shown in Fig. 10 as a function of hydrogen loading. In each
case, the metallic bonding in the bare clusters gradually
changes to covalent bonding as the H loading increases.
The maximum number of hydrogen atoms for both
aluminum clusters is found to occur at a 1∶3 ratio for
Al∶H. This saturation limit of the clusters is confirmed by
molecular dynamics simulations at room temperature.
Subsequent attempts to force additional hydrogen atoms
onto the saturated clusters fail regardless of the site of
addition. The exponential EA PEF is also tested for the
hydride structures to see whether it can reproduce the
correct H saturation limit for each aluminum cluster. In all
cases, the model performs well and is able to find the
correct saturation limit to within one or two H atoms. The
model is also able to provide a good approximation to most
of the structures obtained by the DFT calculations.

FIG. 9. (a) Most stable structures of Al6H4 and Al8H4 computed
by DFT and (b) computed by FF. The FF result suggests the Al6
cluster is able to maintain its original structure. DFT calculations
reveal a metastable isomer for this configuration; however, a lower
energy is obtained when the original Al6 structure is distorted as
shown. The original Al8 structure is maintained in both DFT and
FF calculations upon loading of four H atoms.

FIG. 10. Density of states for Al6 and Al8 clusters as a function of H loading.
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The optimized structure for Al6H18 is shown in
Fig. 11(a). Interestingly, the aluminum cage is able to
retain its original structure at saturation, whereas it is highly
distorted when only four H atoms are attached to it [see
Fig. 9(a)]. This is due to the loading method. When all four
of the H atoms are loaded at the top sites, the Al6 cluster
is able to maintain its original structure. However, when
the H atoms are loaded at the bridge or hollow sites, the
aluminum bonds are distorted, and a structure transition
produces a lower energy. While the model FF is not able to
predict this structure change for the unsaturated Al6 cluster,
the FF is able to provide a good approximation of the
optimized structure at saturation [see Fig. 11(b)].
In Fig. 11(c), the radial distribution function (RDF) is

presented for the Al6 and Al6H18 clusters obtained by DFT
and FF. The RDF that we obtain by the model FF reveals a
greater symmetry with respect to the H-H bonds and a small
increase (approximately 0.2 Å) of the Al-H bonds, which is
consistent with other cluster sizes (see Fig. 7). The RDFs
that we compute by the two methods show comparable
Al-Al bond lengths, which increase with the adsorption
of hydrogen. This indicates weaker aluminum bonding in
the fully saturated aluminum hydride compared to the bare
cluster and suggests that hydrogen embrittlement occurs for
small clusters. Furthermore, the DFT and model FF results
both predict nearly degenerate isomers for the fully
saturated cluster where one of the aluminum atoms has
moved away from the core of the cluster as a result of the
hydrogen addition, suggesting that aluminum atoms may
become mobile upon hydride formation.

V. CONCLUSIONS

An embedded-atom method is used to develop an
analytic potential energy function for simulating clusters

and nanoparticles of aluminum and its hydride. The method
uses a single set of pair potentials for all cluster sizes but
introduces a series of smooth step functions, which allow
the background electron density to be scaled by the number
of nearest-neighbor atoms. The parameters are determined
by an extensive training set computed from first-principle
DFT. The model FF that we obtain from the analytic PEF is
computationally efficient and well suited for simulating
large systems of aluminum and aluminum hydride par-
ticles. The force field can be used for large-scale molecular
dynamics simulations to address whether the embrittlement
of aluminum bonds as a result of the hydrogen addition will
pose possible safety issues related to hydrogen-storage
technologies for onboard automotive applications.
Ab initio molecular dynamics simulations based on DFT

can only be used for small clusters and short time scales
and, thus, are incapable of addressing the embrittlement
phenomenon. Simulations that aim to study hydrogen
embrittlement for large clusters and nanoparticles over
long time scales will require a model FF which is physically
realistic and computationally efficient. The model FF based
on the exponential EA PEF that we develop in this work
appears to be the best candidate for performing such large-
scale simulations. The implementation of the model FF into
the molecular dynamics codes is under way.
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