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Hydrogen recombination due to collisions with He and Ar
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Quantum-mechanical calculations are reported for hydrogen recombination in the presence of a chemically inert
spectator. The calculations employ a square integrable Sturmian basis set to provide a discrete representation
of the H2 continuum. Direct three-body recombination is approximated by computing transitions from the
nonresonant continuum. Resonant and nonresonant states are handled on equal footing within the sequential
two-step energy transfer mechanism. Theoretical rate coefficients are computed within the equilibrium and
steady-state approximations for the density of intermediate molecules. The results are compared with existing
experimental data for He and Ar. The sensitivity of the calculations to pressure variations and to changes in
the potential energy surface are investigated for He. The reliability of these calculations and their relevance for
astrophysical models are discussed.
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I. INTRODUCTION

Atomic and molecular recombination in the presence
of a third body, often known as three-body recombination
(TBR), is one of the most fundamental types of chemical
reactions. Together with the inverse process of collision-
induced dissociation (CID), it comprises about half of the
reactions that have been identified as important in combustion
chemistry [1,2]. Of particular interest is the recombination of
hydrogen due to its fundamental importance in astrophysics
[3–5] and practical importance in plasma physics and rocket
propulsion [6].

The current status for TBR of H2 due to collisions with H
is far from satisfactory. Astrophysical models of primordial
star formation [3–5] require TBR rate coefficients as input. A
survey of published rate coefficients [7] showed a disagree-
ment by orders of magnitude at the low temperatures that
are relevant for H2 formation in primordial gas. Simulations
have shown [5] that this uncertainty fundamentally limits
the ability to model the density, temperature, and velocity
structure of the gas near the collapsing center of population
III stars. TBR of H2 due to collisions with He and the
reverse CID process are also important for many astrophysical
environments [8]. Due to the availability of experimental
data [9], hydrogen recombination due to He and Ar colliders
has provided a convenient testing ground for the development
of TBR theories [10,11]. At room temperatures, there is not
much difference in the efficiency of these noble gas colliders
in catalyzing hydrogen recombination. At lower temperatures,
the catalytic efficiency becomes more sensitive to the col-
lider and the calculations more sensitive to the theoretical
formulation.

The orbiting resonance theory (ORT) developed by Roberts,
Bernstein, and Curtiss [10] has been the most widely used
approach for calculating hydrogen recombination rates. The
theory assumes a steady-state population of H2-orbiting reso-
nances and calculates the rate of stabilization due to collisions
with a third body. The full set of resonances [12–14] is reduced
to a set of six after energy and lifetime considerations are
taken into account. Classical trajectories are computed for
the restricted set of resonances and the recombination rate
constants are determined. Because the ORT mechanism is a
sequential process involving two-body collisions, the theory

neglects the possibility that the recombination occurs in a
single step as a consequence of a direct three-body collision.
The influence of three-body collisions was investigated for
H2 + H2 by Schwenke [14,15] and for Ne2 + H by Pack,
Walker, and Kendrick [2,16]. In both cases, the master
equations were solved for the kinetics and it was found
that three-body collisions were not at all negligible. Similar
conclusions were found in other studies (with a detailed
historical account provided in Ref. [2]), suggesting that a
reexamination of this issue is needed.

Recently, quasiclassical dynamical calculations have been
performed [17] which included two-body and three-body
collisions in a unified treatment of H2 recombination due to
H. Quantum-mechanical calculations that account for two-
body and three-body collisions have also been performed
for CID of H2 due to He [8,18,19]. Advances in present
computing power have made it possible to remove many of
the approximations that were necessary for earlier calculations.
The large internal energy spacing of the H2 molecule allows
quantum-mechanical representations that are sufficiently com-
pact for He and Ar colliders such that numerical convergence
is now achievable at low to intermediate collision energies.
It should be possible, therefore, to develop a complete set of
state-to-state rate coefficients, which may be used in kinetic
models to account for both TBR and the inverse process of
CID. This goal requires (i) a potential energy surface (PES)
that is accurate for all possible coordinate configurations,
(ii) a complete set of state-to-state cross sections computed
using a fully quantum mechanical formulation, (iii) a coherent
inclusion of direct three-body collisions in the dynamics, and
(iv) a master equation analysis of the kinetics that includes
lifetimes for long-lived resonant states and time delays for
short-lived nonresonant states.

In the present work, we address the first three of these
requirements. We employ the best available PES for each
system and study the sensitivity of our calculations to regions
where the PES may be inadequate. We use an L2 discretization
of the continuum that allows for converged dissociation and
recombination cross sections. Nonresonant states are handled
using the same two-step energy transfer mechanism that is used
in ORT to describe resonant states. The quantum-mechanical
coupled states (CS) formulation is used to compute the
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scattering cross sections. Recombination rate constants are
computed using both the equilibrium and steady-state approx-
imations for the population of intermediate molecules. The
results for He and Ar are compared to existing experimental
data.

II. THEORY

Recombination of H in the presence of an inert third body
M may occur through the direct process

H + H + M → H2 + M (1)

or through the sequential two-step process

H + H → H2(u), (2)

H2(u) + M → H2(b) + M, (3)

where b and u designate bound and unbound states. The
recombination rate coefficient for the two-step process is given
by

kr =
∑
bu

kub

[H2(u)]

[H]2
, (4)

where [X] denotes the density of X, and kub is the rate
coefficient which connects the bound and unbound states. At
equilibrium

[H2(u)]

[H]2
= gu exp(−Eu/kBT )

4QT

, (5)

where QT is the usual translational partition function and the
factor of 4 in the denominator of Eq. (5) is needed to account for
the two H atoms approaching each other on the 1�+

g electronic
state. TBR rate coefficients may be obtained from CID rate
coefficients using detailed balance:

kub = gb

gu

exp

(
Eu − Eb

kBT

)
kbu, (6)

where gb and gu are the degeneracy factors associated with
the diatomic energies Eb and Eu. If the unbound states are
restricted to quasibound states, then the formulation reduces
to the orbiting resonance theory of Roberts, Bernstein, and
Curtiss [10]. The three-body continuum contribution may be
included in the two-step formulation by allowing nonresonant
states in the summation over u in Eq. (4). These nonreso-
nant states represent discretized contributions in a numerical
quadrature of the continuum [8]. In this approach, the direct
recombination process (1) is treated in the same manner as the
contributions from the orbiting resonances. The state-to-state
rate coefficient

kif =
(

8kBT

πµ

)1/2

(kBT )−2
∫ ∞

0
σif (ET )

× exp(−ET /kBT ) ET dET (7)

is also extended to include resonant and nonresonant unbound
states. In Eq. (7), ET = E − Ei is the translational energy in
the ith channel, µ is the reduced mass of M with respect to
H2, and σif (ET ) is the cross section for the collision.

It is noteworthy that Eq. (4) may be assumed to include
lifetime and pressure effects via a steady-state approximation

for the formation of the intermediate molecule. The steady-
state density is given by

[H2(u)]

[H]2
= k

eq
u

1 + τu[M]
∑

b kub

, (8)

where τu is the lifetime of the unbound diatomic state and k
eq
u

is the equilibrium constant given in Eq. (5). As noted by Pack,
Walker, and Kendrick [16], this steady-state approximation
neglects possible repopulation of the intermediate molecules
by three-body collisions. Their master equation analysis
showed that three-body collisions are essential for keeping
the metastable quasibound states from getting depleted at
high pressures. Unbound states that are either part of the
nonresonant continuum or else correspond to broad above-
barrier resonances with negligible lifetimes are unmodified by
Eq. (8). These states give rise to pure third-order kinetics for
all pressures. The use of Eq. (8) for unbound resonances with
significant lifetimes, however, does not give pure third-order
kinetics at large pressures due to the neglected [M] dependence
in the numerator that arises from three-body collisions [16].
The use of the equilibrium approximation (5), the steady-state
approximation (8), and the need for a more detailed master
equation analysis for the present system is discussed in the
next section.

The collision cross sections are computed quantum me-
chanically using the coupled states formulation [20,21] for the
Hamiltonian

H = − 1

2m
∇2

r − 1

2µ
∇2

R + V (r,R,θ ), (9)

where m is the reduced mass of H2, r is the distance between
the H atoms, R is the distance between M and the center
of mass of H2, and θ is the angle between �r and �R. The
three-dimensional potential energy surface is separated into a
diatomic potential v(r) and an interaction potential VI (r,R,θ ).
The diatomic Schrödinger equation[

1

2m

d2

dr2
− j (j + 1)

2m r2
− v(r) + εvj

]
χvj (r) = 0 (10)

is diagonalized to obtain the eigenstates, χvj, for each vibra-
tional and rotational quantum number v and j . The bound
and unbound diatomic energies, Eb and Eu, in Eqs. (5)–(7)
are determined by the eigenvalues, εvj . The diagonalization
is performed by expanding the diatomic eigenstates in an
orthonormal Laguerre polynomial L

(2j+2)
n basis set

φj,n(r) =
√

an!

(n + 2j + 2)!
(ar)j+1 exp(−ar/2)L(2j+2)

n (ar).

(11)

The full wave function in the body-fixed frame is expanded for
a total angular momentum J in the set of diatomic eigenstates
as

	J
( �R,�r) = 1

R

∑
v,j

Cvj (R)χvj (r)Yj
(θ,0), (12)

where 
 is the body-fixed projection of both J and j . In the
CS formulation, the off-diagonal Coriolis couplings that arise
in the body-fixed frame are neglected, and the eigenvalue of
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the orbital angular momentum operator l̂2 is approximated
by l(l + 1), where l is assumed to be a conserved quantum
number. This procedure yields the set of coupled equations[

d2

dR2
− l(l + 1)

R2
+ 2µ(E − εvj )

]
Cvj (R)

= 2µ
∑
v′,j ′

Cv′j ′ (R) 〈vj
|VI |v′j ′
〉, (13)

where

〈vj
|VI |v′j ′
〉

=
λmax∑
λ=0

(−1)
[(2j + 1)(2j ′ + 1)]1/2

×
(

j ′ λ j

0 0 0

) (
j ′ λ j


 0 −


)
〈χvj |Vλ|χv′j ′ 〉 (14)

and Vλ are coefficients for the expansion of the interaction
potential in terms of Legendre polynomials Pλ,

VI (r,R,θ ) =
λmax∑
λ=0

Vλ(r,R)Pλ(cos θ ). (15)

The (...) denotes a 3-j symbol and the matrix element
〈χvj |Vλ|χv′j ′ 〉 assumes integration over r . The collision cross
section is given by

σvj→v′j ′ = π

2µET (2j + 1)

Jmax∑
J=0

(2J + 1)

×

max∑

=0

(2 − δ
0)
∣∣δjj ′δvv′ − SJ


vj ;v′j ′
∣∣2

, (16)

where SJ

vj ;v′j ′ is the scattering matrix and ET = E − εvj . The

set of coupled equations (13) may be conveniently solved using
the general inelastic scattering program MOLSCAT [22]. The
interaction potentials for the two systems are obtained from
Refs. [23] and [24]. To describe dissociation and recombina-
tion, the PES should provide an accurate representation for all
values of H-H separation. For He + H2 [8,25], the dissociation
cross sections were found to be insensitive to changes in the
Muchnik and Russek (MR) potential for large stretching of
the H-H bond (r > 4 a.u.). Although the functional form for
the dispersion term in the MR potential is not adequate to
properly represent the physics [23], the exponential decay
contained within the Sturmian representation effectively cuts
off the unphysical long-range behavior of the potential. For
intermediate stretching (2 < r < 4 a.u.), the MR potential is
not constrained by ab initio data and there is some sensitivity
of the cross sections to changes in the parametrization of the
potential in this region [25]. This sensitivity is investigated in
the next section.

III. RESULTS

Recombination rate coefficients were computed from CID
rate coefficients using detailed balance. Cross sections for CID
were computed previously for He + H2 for the most weakly
bound vibrational levels [8]. We extend these calculations
to include more deeply bound vibrational levels and more
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FIG. 1. (Color online) Rate coefficient for CID from v = 14,

j = 0. The solid blue curve (He) and dashed red curve (Ar) are
the present results. Also shown for Ar are the distorted-wave Born
approximation results of Sakai [26].

translational energies near the dissociation thresholds. The
same method is then used for computing Ar + H2 cross
sections. Rate coefficients are computed from the cross
sections using Eq. (7). Figure 1 shows the CID rate coefficients
for the two systems when the H2 molecule is initially in the last
bound vibrational level for j = 0. The results are very similar,
particularly at low temperature. The present results for Ar are
also compared with the distorted-wave Born approximation
results of Sakai [26]. The comparison shows that the distorted
wave results are significantly lower than the present results at
low temperatures but agree very well with the present results
at high temperatures.

Figures 2 and 3 show three-body recombination rate
coefficients for He + H2 as a function of temperature. In
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FIG. 2. (Color online) Three-body recombination rate coeffi-
cients for He + H2 (v, j = 4). The curves show an orderly decrease
with v at low temperatures. The v = 14 curve corresponds to
recombination from a resonant state whereas the v � 15 curves
correspond to recombination from positive energy pseudostates.
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FIG. 3. (Color online) Three-body recombination rate coeffi-
cients for He + H2 (v, j = 5). The curves show an orderly decrease
with v at all temperatures. The v = 14 curve corresponds to
recombination from a resonant state whereas the v � 15 curves
correspond to recombination from positive energy pseudostates.

Fig. 2 the curves correspond to recombination from positive
energy states of H2 with j = 4. The dominant recombination
contribution comes from the v = 14 orbiting resonance. This
resonance is long-lived with a width of 8.4 × 10−6 cm−1

[14]. The remaining v � 15 states are nonresonant. The
rate coefficients for these states decrease uniformly with v

for low temperature. At higher temperatures, the v = 15–19
curves intersect and the recombination rate coefficients are
of comparable magnitude. The rate coefficients for v = 20
and v = 21 are considerably smaller than for v = 15–19 for
all temperatures, indicating that the basis set is sufficiently
converged. In Fig. 3 the curves correspond to recombination
from positive energy states of H2 with j = 5. The v = 14
state is a resonance state with a width of 15.22 cm−1 [14].
Although still the dominant contribution to recombination,
the rate coefficient for v = 14 is closer in magnitude to that
of v = 15. The rate coefficients for the nonresonant states,
v = 15–20, decrease uniformly with v for all temperatures.
The contribution from v = 20 is significantly smaller than the
others, which again indicates that the basis set is sufficiently
converged.

Figures 4 and 5 show three-body recombination rate
coefficients for Ar + H2 as a function of temperature. Orbiting
resonances occur for H2 (v = 13, j = 8) and H2 (v = 13,

j = 9) with widths of 1.485 and 48.28 cm−1, respectively.
Figure 4 shows that the resonant contribution for j = 8 is
clearly dominant over the nonresonant contribution for all
temperatures. As in the He case shown in Fig. 3, the rate
coefficients for the nonresonant states decrease uniformly with
v over the entire temperature range. This is not the case for
the j = 9 rate coefficients shown in Fig. 5. The v = 15 curve
crosses the v = 14 curve around 400 K and overtakes the
resonant v = 13 curve around 700 K. Likewise, the v = 17
curve crosses the v = 16 curve around 300 K and approaches
the v = 14 curve at 1000 K. The highest energy pseudostate
for j = 9 corresponds to v = 18, which gives a negligible
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FIG. 4. (Color online) Three-body recombination rate coeffi-
cients for Ar + H2 (v, j = 8). The curves show an orderly decrease
with v at all temperatures. The v = 13 curve corresponds to
recombination from a resonant state whereas the v � 14 curves
correspond to recombination from positive energy pseudostates.

contribution to the total recombination rate and indicates that
the basis set is sufficiently converged.

The total resonant and nonresonant three-body recombina-
tion rate coefficients for He + H2 are shown in Fig. 6. These
results include recombination to either of the two most weakly
bound vibrational levels for each rotational level j � 20.
Recombinations to more strongly bound levels were found to
make a negligible contribution. The resonant and nonresonant
contributions were added together to obtain the total rate
coefficient that is compared to the experimental data of Trainor
et al. [9] at 77 and 300 K. The total rate coefficients computed
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FIG. 5. (Color online) Three-body recombination rate coeffi-
cients for Ar + H2 (v, j = 9). The curves show an orderly decrease
with v at low temperatures. The v = 13 curve corresponds to
recombination from a resonant state whereas the v � 14 curves
correspond to recombination from positive energy pseudostates.
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FIG. 6. (Color online) Rate coefficient for three-body recombi-
nation of H2 due to collision with He. The total rate coefficients are
obtained as the sum of the resonant and nonresonant contributions.
Results for the modified PES (see text) show improved agreement
with the experimental data.

using the PES of Muchnik and Russek [23] are found to be
about 25% larger than the experimental data.

There are several possibilities for this discrepancy. One
possibility is the inadequate constraint of the PES for stretching
of the H2 bond beyond 2 a.u. To test this hypothesis, a modified
PES was constructed as described in Mack et al. [25]. The
terms Ad (r) and αd (r) contained in the original PES [23]
were matched to decaying exponential functions of the form
Ar exp(−Br). The parameters A and B were determined by the
continuity of the functions and their derivatives at r = 2 a.u.
This modification does not affect the original PES in regions
where there is ab initio data to constrain the parametrization.
For large stretching, the exponential decay contained in the
modified PES provides a more realistic r dependence for
the terms Ad (r) and αd (r) than does the linear dependence
contained in the original PES [23]. Figure 6 shows that the
three-body recombination rate coefficients are in much better
agreement with the experimental data when the modified
PES is used in the calculations. Of course, the modification
described above is not unique and it would be desirable to
constrain the 2 < r < 4 a.u. region with additional ab initio
data.

Another possibility for the discrepancy between theory
and experiment for He is the use of the equilibrium ap-
proximation (5). This approximation does not take into
account the lifetimes of the intermediate states and may
overestimate the resonant contributions at large pressures.
The steady-state approximation (8) reduces the resonant
contribution and often provides a more accurate estimate
of theoretical recombination rate coefficients. Figure 7 il-
lustrates this point using the original MR PES without
the modification described above. The theoretical curve
decreases with [He] and may be brought into good agree-
ment with the experimental data for [He] = 1022 cm−3.
The steady-state approximation, while generally more accurate
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FIG. 7. (Color online) Rate coefficient for three-body recombi-
nation of H2 due to collision with He as a function of density (in units
of cm−3). Results for the unmodified PES may be brought into good
agreement with the experimental data using Eq. (8) with a density of
1022 cm−3.

than the equilibrium approximation, still neglects repopulation
of intermediate quasibound states due to the three-body
collisions. A detailed master equation analysis is needed to
fully account for this density dependence. The actual density
used in the experiments was not reported, but if it was less than
1015 cm−3 the steady-state and equilibrium approximations
yield essentially the same recombination rate coefficient (see
Fig. 7). In this case, a master equation analysis is not needed
and the discrepancy between theory and experiment would
likely be due to inaccuracies in the PES.

The case of Ar provides a good point of comparison because
the He and Ar experiments were performed in a similar
manner. The PES for Ar + H2 [24] was specifically designed
for use in energy transfer studies involving dissociation and
recombination. The PES provides an accurate account of the
H2 bond length in both the strong bonding and dissociation
limits. The recombination rate coefficients computed using
this PES, therefore, provide a good test of the reliability of the
quantum-mechanical scattering formulation. Figure 8 shows
the calculated recombination rate coefficients for Ar + H2

together with the experimental data of Trainor et al. [9]. The
comparison shows excellent agreement between theory and
experiment at 300 K. There is a large discrepancy, however,
between theory and experiment at 77 K. We believe this is due
to the neglect in our calculations of the exchange mechanism
that produces intermediate states of ArH before recombining
to form H2. This mechanism, which is negligible for He due
to its weaker attraction, is expected to become increasingly
important for Ar as the temperature is reduced. The agreement
at 300 K suggests that the Ar density is probably low enough
that the equilibrium approximation is sufficient. The same
reasoning further underscores the need to extend the range
of ab initio data for He + H2 to the intermediate stretching
region (2 < r < 4 a.u.).
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FIG. 8. (Color online) Rate coefficient for three-body recombi-
nation of H2 due to collision with Ar. The total rate coefficients are
obtained as the sum of the resonant and nonresonant contributions.
The discrepancy at 77 K is likely due to the neglect in our calculations
of the exchange mechanism, which produces intermediate states of
ArH before recombining to form H2.

IV. CONCLUSIONS

Rate coefficients for TBR and CID of H2 due to collisions
with He are known to be important for astrophysical models
[4,8]. While there are no experimental data available to bench-
mark the CID calculations, there are existing experimental
data available to compare with the TBR calculations. These
comparisons show that the present theoretical results are about
25% larger than expected. Two possible reasons for this
discrepancy were explored. The PES that was used in the
calculations is known to be unconstrained by ab initio data
for H2 bonds that are stretched beyond 2 a.u. The TBR and
CID calculations were found to be sensitive to this region of
the PES. A second possibility was the use of the equilibrium
approximation for the population of intermediate molecular
states. Good agreement with the experimental data was found
at high He density using the steady-state approximation. A
third possible reason for the discrepancy between theory and

experiment would be the use of the CS formulation that
neglects Coriolis couplings in the body-fixed frame. However,
based on previous studies, we believe this formulation is
adequate at the temperatures considered in the present case.
The agreement between theory and experiment found here
for TBR due to Ar collisions at 300 K also attests to the
reliability of the CS formulation. The Ar results suggest that
the equilibrium approximation is probably adequate for the
conditions of the experiment. Therefore, we conclude that the
largest source of theoretical uncertainty for He comes from
the unconstrained region of the MR PES. Considering the
success of this PES for calculating elastic and inelastic pro-
cesses [27] over a large range of energies, it would be desirable
to extend the surface by adding ab initio data in the uncon-
strained region (2 < r < 4 a.u.) and recompute the TBR rate
coefficients.

Although a 25% discrepancy between theory and experi-
ment is not ideal, it is unlikely to make a significant difference

in astrophysical models even if all the error is on the theoretical
side. However, the current status for TBR of H2 due to
collisions with H is considerably worse than for He. One of
the motivations of this work was to develop a theory of TBR
which includes important nonresonant processes and is fully
quantum mechanical. This goal has been met for the case of
chemically inert spectators. The next issue that must be faced is
how to extend the theory to include exchange mechanisms. In
addition to the important astrophysical H + H2 TBR system, it
has recently been shown that a wide variety of cold trappable
van der Waals molecules can be produced via TBR in a buffer
gas loaded magnetic trap [28,29]. Theoretical support for
these low-temperature experiments requires a fully quantum
mechanical description that includes exchange mechanisms.
It is hoped that some of the theoretical methods developed in
this work may be useful in addressing recombination for these
important systems.
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