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We report quantum dynamics calculations of rotational and vibrational energy transfer in collisions
between two para-H2 molecules over collision energies spanning from the ultracold limit to thermal
energies. Results obtained using a recent full-dimensional H2–H2 potential energy surface (PES)
developed by Hinde [J. Chem. Phys. 128, 154308 (2008)] are compared with those derived from
the Boothroyd, Martin, Keogh, and Peterson (BMKP) PES [J. Chem. Phys. 116, 666 (2002)]. For
vibrational relaxation of H2(v = 1, j = 0) by collisions with H2(v = 0, j = 0) as well as rotational
excitations in collisions between ground state H2 molecules, the PES of Hinde is found to yield results
in better agreement with available experimental data. A highly efficient near-resonant energy transfer
mechanism that conserves internal rotational angular momentum and was identified in our previous
study of the H2–H2 system [Phys. Rev. A 77, 030704(R) (2008)] using the BMKP PES is also found
to be reproduced by the Hinde PES, demonstrating that the process is largely insensitive to the details
of the PES. In the absence of the near-resonance mechanism, vibrational relaxation is driven by
the anisotropy of the potential energy surface. Based on a comparison of results obtained using the
Hinde and BMKP PESs with available experimental data, it appears that the Hinde PES provides a
more accurate description of rotational and vibrational transitions in H2–H2 collisions, at least for
vibrational quantum numbers v ≤ 1. © 2011 American Institute of Physics. [doi:10.1063/1.3511699]

I. INTRODUCTION

Recent advances in creating dense samples of cold and
ultracold molecules have engendered considerable interest in
atom–molecule and molecule–molecule interactions at ultra-
cold temperatures. Initial studies of ultracold molecule colli-
sions were largely centered around rotational and vibrational
relaxation in diatomic molecules induced by collisions with
rare gas atoms.1–8 These studies demonstrated that rotational
and vibrational relaxation of molecules at ultracold temper-
atures obey quantum mechanical threshold behavior and the
corresponding rate coefficients attain finite values in the limit
of zero temperature, in accordance with Wigner’s law.9 The
limiting values of the vibrational relaxation rate coefficients
were found to be strongly sensitive to the initial rovibra-
tional levels of the molecule.1 Subsequent studies of barri-
erless alkali- and nonalkali-metal atom–dimer systems indi-
cated that the zero-temperature inelastic and reactive rate co-
efficients can attain large values, on the order of 10−11–10−10

cm3 molecule−1 s−1 (Refs. 10–15) and that the rate coeffi-
cients are less sensitive to the initial vibrational level of the
molecule.16 Calculations of the F + H2 reaction, which has
an energy barrier of about 500 K, indicated that the reac-
tion may occur with a rate coefficient of about 10−12 cm3

molecule−1 s−1 at ultralow temperatures.17 Since the reaction
occurs primarily through tunneling at low temperatures, this
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has prompted several subsequent studies of tunneling domi-
nated reactions at ultracold temperatures.18–27 These studies
revealed that the van der Waals interaction potential in the
incident channel may play a key role in the reactive outcome
and that in reactions involving vibrationally excited molecules
the reactive pathway may compete or dominate over nonre-
active vibrational quenching.21, 23, 24, 27 Because perturbations
induced by an external electric or magnetic field are signifi-
cant at sub-Kelvin temperatures, external field (both electric
and magnetic) control of molecular collisions and chemical
reactions at ultracold temperatures has gained considerable
theoretical attention2, 28–33 and important progress has been
made at the experimental front recently.34, 35

While most collisional studies of ultracold molecules
have focused on atom–diatom systems, molecule–molecule
collisions have received much less attention. At high densities
of trapped molecules, molecule–molecule collisions become
more important than atom–dimer collisions and they become
the main source of trap loss. The primary difficulty in theo-
retical studies of molecule–molecule collisions is the increase
in dimensionality in going from triatomic to tetra-atomic sys-
tems. For this reason, initial collisional studies by Forrey36

and Lee et al.37 have focused on the H2–H2 system by treat-
ing the H2 molecules as rigid rotors. Flower and Roueff 38, 39

reported quantum calculations of rovibrational transition in
H2–H2 collisions by treating one of the H2 molecules as a
rigid rotor. Recently, Quéméner et al.40, 41 have extended the
formalism to include the fully six-dimensional configuration
space, without employing the angular momentum decoupling
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approximations used in previous full-dimensional studies of
the H2–H2 system at higher temperatures.42–44 One of the
key findings of Quéméner et al.40 is that for certain combi-
nations of initial rovibrational levels of the two molecules,
quasiresonant transitions at ultracold temperatures can occur
through a highly efficient pathway that conserves the total ro-
tational angular momentum of the two molecules and nearly
conserves the internal energy. Time-dependent quantum cal-
culations of H2–H2 collisions without decoupling approxima-
tions have also been reported but these methods are generally
better suited for higher temperatures.45, 46 Here we focus on
molecule–molecule collisions taking the H2–H2 system as an
illustrative example.

The H2–H2 system has long been considered as a bench-
mark candidate for quantum dynamics studies of molecule–
molecule collisions. Being the most abundant molecular
species in the interstellar medium, rotational and vibrational
transitions in collisions between H2 molecules have been top-
ics of considerable interest.38, 39, 47–49 A number of potential
energy surfaces for the H4 system have been reported in the
literature and dynamics calculations using quasiclassical tra-
jectory, semiclassical, and quantum mechanical methods have
been performed by different investigators. In particular, a
six-dimensional potential energy surface (PES) developed by
Boothroyd, Martin, Keogh, and Peterson (BMKP) (Ref. 50)
has been adopted in a number of quantum dynamics calcula-
tions of the H2–H2 system. However, the accuracy of this po-
tential has come under scrutiny because it yields values for ro-
tational excitation rate coefficients in collisions of two ground
state para-H2 molecules that are too low37 or values for
vibrational de-excitation cross sections in H2(v = 1, j = 0)
+ H2(v = 0, j = 0) collisions that are too large.41, 42 The
large values for the vibrational relaxation cross sections were
attributed to high-order anisotropies in the angular expan-
sion of the interaction potential.42 In contrast, the PES devel-
oped by Diep and Johnson (DJ) (Ref. 51) was found to yield
0 → 2 rotational excitation cross sections in collisions of ro-
tationally ground state para-H2 molecules in close agreement
with experimental results.52 However, this surface is restricted
to rigid rotor collisions and it cannot describe vibrational
transitions. A more accurate potential for the H2–H2 system
within the rigid rotor model and using very large orbital ba-
sis sets (up to augmented quintuple zeta size supplemented
with bond functions) has also been reported by Patkowski
et al.53 Recently, Hinde54 reported a full-dimensional PES
for the H2–H2 system that includes an accurate description
of the van der Waals interaction region. This surface is pri-
marily based on high quality ab initio data but includes two
empirical parameters to accurately reproduce bound and qua-
sibound energy levels of H2−D2 and D2–D2 van der Waals
complexes.54

Here we report full-dimensional quantum calculations of
rovibrational transitions in the H2–H2 system using the PES
of Hinde54 and compare the results with those obtained using
the BMKP surface and its less anisotropic BMKPE version.42

The near-resonant rotation–vibration energy transfer identi-
fied by Quéméner et al.40 using the BMKP PES is also equally
well reproduced by the PES of Hinde, demonstrating that the
mechanism is largely insensitive to the fine details of the PES.

Temperature dependent rate coefficients for vibrational relax-
ation of H2(v = 1) induced by H2(v = 0) collisions derived
from the Hinde potential are found to be in good agreement
with the experiment.

II. METHODOLOGY

The quantum dynamics formalism used is the same as
that employed in our two previous articles40, 41 and only a
brief description of the methodology is given here. For de-
tails of the theoretical formalism we refer to Ref. 41 We
use a time-independent quantum formalism based on Ja-
cobi coordinates to describe the scattering of two 1� di-
atomic molecules without employing any angular momentum
decoupling approximations. The methodology has been de-
scribed by Takayanagi,55 Green,56 Alexander and DePristo,57

and Zarur and Rabitz,58 using the close-coupling formal-
ism of Arthurs and Dalgarno59 and it has been imple-
mented in the TwoBC – Quantum Scattering Code.60 The
notation (v1 j1 v2 j2), referred to as a combined molecu-
lar state (CMS), is used to describe the H2(v = v1, j = j1)
+ H2(v = v2, j = j2) collision system where vi and ji are
the vibrational and rotational quantum numbers.

The close-coupling method uses an expansion of the an-
gular dependence of the interaction potential in terms of a
product of spherical harmonics,41

U (�r1, �r2, �R) =
∑

λ

Aλ(r1, r2, R)Yλ(r̂1, r̂2, R̂), (1)

where �r1 and �r2 represent the vectors joining the two atoms
of the two H2 molecules and �R denotes the vector joining the
centers of mass of the two molecules. The functions Yλ are
given by

Yλ(r̂1, r̂2, R̂) =
∑

m

〈λ1m1λ2m2|λ12m12〉

× Yλ1m1 (r̂1)Yλ2m2 (r̂2)Y ∗
λ12m12

(R̂), (2)

where λ ≡ λ1λ2λ12 and m ≡ m1m2m12. The notation
〈λ1m1λ2m2|λ12m12〉 refers to a Clebsch–Gordan coefficient.
For each value of the center-of-mass distance, R, the
Schrödinger equation is solved by propagating the log-
derivative matrix, following methods developed by Johnson61

and Manolopoulos.62 This yields the scattering matrix from
which state-to-state cross sections for transitions from an
initial CMS (v1 j1 v2 j2) to final states (v ′

1 j ′
1 v ′

2 j ′
2) are

calculated.
In defining state-to-state cross sections, distinction

must be made between collisions involving distinguish-
able and indistinguishable molecules. For indistinguish-
able molecules as in the present case, the state-to-
state cross sections must be statistically weighted by
the two molecular spin exchange-permutation symmetry
components,

σv1 j1v2 j2→v ′
1 j ′

1v ′
2 j ′

2
(Ec) = W +σ εP =+1 + W −σ εP =−1 (3)
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with

σ εP = π (1 + δv1v2δ j1 j2 ) (1 + δv ′
1v ′

2
δ j ′

1 j ′
2
)

(2 j1 + 1) (2 j2 + 1)k2

×
∗∑

j12 j ′
12ll ′ JεI

(2J + 1)
∣∣δv1 j1v2 j2,v ′

1 j ′
1v ′

2 j ′
2

− S
J j12 j ′

12εI εP

v1 j1v2 j2,v ′
1 j ′

1v ′
2 j ′

2
(Ec)

∣∣2
, (4)

where k is the wave vector associated with the collision en-
ergy Ec, l is the orbital angular momentum quantum num-
ber, j12 is the total rotational angular momentum quantum
number, J is the total angular momentum quantum number,
εI is the eigenvalue of the spatial inversion operator, and S
is an element of the scattering matrix. The superscript over
the sum indicates that the summation is over states that are
“well ordered,” which in the present case includes v1 > v2,
and if v1 = v2, j1 ≥ j2. In collisions of para-H2 molecules
for which nuclear spin I = 0, W + = 1, W − = 0, and only
the εP = +1 symmetry is needed in the close-coupling cal-
culation. For collisions involving ortho-H2 molecules (nu-
clear spin I = 1), W + = 2/3, W − = 1/3, and both symme-
tries εP = ±1 are required.

The total inelastic cross section is given by the sum of
all inelastic state-to-state cross sections. Thermal averaging
the cross sections over a Maxwell–Boltzmann distribution of
collision energies yields rate coefficients as a function of the
temperature.

III. RESULTS AND DISCUSSION

A. Vibrational relaxation

First we discuss some aspects of convergence of the state-
to-state cross sections. Convergence has to be sought with
respect to the rotational and vibrational levels of the two
molecules included in the close-coupling scheme as well as
the number of anisotropic terms included in the expansion of
the angular part of the interaction potential [Eq. (1)]. These is-
sues have been discussed in detail in our previous studies40, 41

using the BMKP PES. Here we focus mainly on the con-
vergence with respect to the number of terms included in
the angular expansion of the interaction potential. This is
shown in Fig. 1 for H2(v = 1, j = 0) + H2(v = 0, j = 0)
→ H2(v = 0, j) + H2(v = 0, j) collisions for both the Hinde
and BMKP PESs, at a collision energy of 10−3 K. While the
Hinde PES yields identical results for λ1 = λ2 = 2 and 4, the
BMKP PES requires terms up to 8 for these quantities.41 In
our previous paper we have shown that λ1 = λ2 = 8 and 10
yield similar results on the BMKP PES.41 Thus, the BMKP
PES is much more anisotropic than the Hinde PES for the
H2–H2 system. It is this high anisotropy that leads to much
larger values of vibrational relaxation rate coefficients for the
BMKP PES compared to experimental data.42 For the rest of
the calculations, we employ λ1 = λ2 = 2 for the Hinde PES.

We have also carried out extensive convergence tests
with respect to the rovibrational levels of the two molecules
included in the calculations. For calculations involving vi-
brationally excited molecules we included vibrational levels
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FIG. 1. Convergence of the state-to-state cross sections for H2(v = 1, j = 0)
+ H2(v = 0, j = 0) collisions with respect to the number of terms in the an-
gular expansion of the interaction potential for a collision energy of 10−3 K.
The black distribution corresponds to the Hinde PES and the red distribution
corresponds to the BMKP PES (taken from Ref. 41).

v = 0 and v = 1 with rotational levels j = 0 − 10 in v = 0
and j = 0 − 6 in v = 1. The H2 potential of Schwenke67 is
used to calculate energy levels and vibrational wave functions
of the H2 molecule. To make the calculations affordable an
energy cut-off of 14 000 cm−1 was imposed and all CMSs
with energy lower than the cut-off energy were included in
the calculations. This led to a total of 42 CMSs. A sufficient
number of total angular momentum partial waves have been
included in the calculations to secure convergence of the com-
puted cross sections. The range in J varied from 0 to 100 with
the maximum depending on the collision energy. For J > 15
a total of 1378 channels are present which makes the calcula-
tions very computer intensive for higher energies.

In Fig. 2, we present total inelastic cross sections for
different initial states of the molecules computed using the
BMKP and Hinde PESs for collision energies ranging from
10−6 to 100 K. Three different combinations of initial states

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ec (K)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
ro

ss
 s

ec
tio

n 
(1

0-1
6  c

m
2 )

Hinde PES
BMKP PES

1002

1200

1000

FIG. 2. Vibrational relaxation cross sections as a function of the colli-
sion energy for H2(v = 1, j = 0) + H2(v = 0, j = 0), H2(v = 1, j = 2)
+ H2(v = 0, j = 0), and H2(v = 1, j = 0) + H2(v = 0, j = 2) collisions.
The bold line corresponds to the Hinde PES while the thin line corresponds
to the BMKP PES (taken from Ref. 41).
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FIG. 3. State-to-state cross sections for H2(v = 1, j = 0) + H2(v = 0,

j = 0), H2(v = 1, j = 2) + H2(v = 0, j = 0), and H2(v = 1, j = 0)
+ H2(v = 0, j = 2) collisions at an incident kinetic energy of 10−6 K. The
black distribution corresponds to the Hinde PES while the white and dashed
distribution corresponds to the BMKP PES (taken from Ref. 41).

are considered here with one molecule in the v = 1 vibra-
tional level and the other molecule in the vibrationally ground
state. The initial rotational levels of the two molecules are
different in the three cases. In the CMS notation the three
initial states are (i) (1000), (ii) (1200), and (iii) (1002). As
Fig. 2 illustrates the results depend strongly on the initial ro-
tational and vibrational levels of the two molecules as well
as the choice of the PES. Two main features can be noted in
Fig. 2: (a) the cross sections are widely different for the three
initial states and (b) the BMKP and Hinde PESs yield results
that differ by more than an order of magnitude for the CMS
(1000) but the agreement between the two PESs is improved
for the other two cases. In our previous work using the BMKP
PES we have shown that the large values of relaxation cross
sections for the (1002) initial state is due to a near-resonant
transition that conserves the total rotational angular momen-
tum of the two molecules. In the discussions below we show
that the same argument applies for the results obtained using
the Hinde PES and that the near-resonant transition is largely
independent of the details of the PES. By examining the state-
to-state cross sections we will also explain the relative magni-
tudes of the cross sections for the three initial states obtained
using the two PESs.

Figures 3(a)–3(c) show state-to-state cross sections for
the three initial states obtained from the two PESs at a col-
lision energy of 10−6 K. Each of the open channels is la-
beled by a CMS index and is shown in the order of increas-
ing total internal energy. It is seen that the final state distri-
butions are quite different for the three cases. The final ro-
tational population is dictated by a competition between in-
ternal energy conservation and total rotational angular mo-
mentum conservation.40 Generally, when the internal energy
is nearly conserved in the vibrational relaxation process, tran-
sition occurs to an excited rotational level that lies just below
the initial channel (or just above for excitation collisions). In
this case, the kinetic energy in the incident and outgoing chan-
nel will be nearly the same leading to similar radial wavefunc-
tions in the two channels resulting in strong radial overlaps. If
the magnitude of the change in internal energy is denoted by
	ε = |ε f − εi |, then 	ε has to be the smallest for the most
favorable radial overlaps. Large values of 	ε will lead to dis-
similar radial wavefunctions in the two channels, one with a
low oscillatory behavior and the other with a high oscillatory
behavior resulting in small values of the inelastic quenching
cross sections. The total angular momentum J is conserved
before and after the collision such that 	J = 	 j12 + 	l = 0
where 	 j12 and 	l denote, respectively, the difference in the
total rotational angular momentum quantum numbers and or-
bital angular momentum quantum numbers before and after
the collision. Transitions which have small internal energy
and internal angular momentum gaps are generally very ef-
ficient and may be described by energy and angular momen-
tum gap laws.63 State selectivity is enhanced even more as
the collision energy is decreased. At ultralow energies, only
the s-wave (l = 0) is important for the incident channel and
couplings between CMSs with 	 j12 = 0 (same initial and fi-
nal total rotational angular momentum) will dominate. In this
case, conservation of the total angular momentum requires
that 	l = 0, leading to an outgoing channel with no cen-
trifugal barrier. For transitions with 	 j12 �= 0, the outgoing
channel will experience a centrifugal barrier corresponding to
l = 	 j12 with diminished coupling between rotational levels.
In the ideal case, if both conditions are simultaneously satis-
fied (	ε ≈ 0 and 	 j12 = 0), one can expect a highly efficient
near-resonant transition between the initial and a final CMS.

For case (a) shown in the top panel of Fig. 3, both con-
ditions cannot be fulfilled simultaneously. While the transi-
tion (1000) → (0000) satisfies 	 j12 = 0, it has the largest
energy gap 	ε. On the other hand, the (1000) → (0800) tran-
sition has the smallest energy gap but also has l = 	 j12 = 8.
Thus the final-state distribution is dictated by a compromise
between these two conditions and consequently no single final
state is preferentially populated. For case (b) (middle panel of
Fig. 3), the two criteria are not satisfied either, but compared
to the preceding case, the transition (1200) → (1000) is more
favorable than the others because it leads to the smallest en-
ergy and angular momentum gaps. This transition involves
(for s-wave scattering in the incident channel) 	 j12 = −2,
	l = 2, and relatively small 	ε. For case (c) (bottom panel of
Fig. 3), both criteria are simultaneously satisfied for the tran-
sition (1002) → (1200) and it becomes the dominant transi-
tion. This involves 	 j12 = 	l = 0 and 	ε = 25.45 K which
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function of the collision energy.

is the smallest possible energy defect. For higher energies, the
orbital angular momentum increases and may change during
the collision. The near resonant (1002) → (1200) transition
persists and at energies above 25.45 K, the reverse transition
is open with approximately the same efficiency (see Fig. 2).

To illustrate the efficiency of near-resonant transitions
when the energy and angular momentum gaps are simul-
taneously satisfied we compare in Fig. 4 the total inelastic
cross section for the (1002) initial state with the near-resonant
(1200) and the next dominant (1000) final states. For clarity,
only results obtained using the Hinde potential are included.
It is seen that the total inelastic cross section is almost com-
pletely dominated (more than 99%) by the near-resonant tran-
sition over the entire energy range. Thus, the near-resonant
process is not just restricted to ultralow energies but occurs
over a broad spectrum of energies where a range of total an-
gular momentum quantum numbers (J = 0–10 in this case)
contribute to the cross section.

The large discrepancy between the results on the two
PESs for the CMS (1000) can also be explained based on
the state-to-state cross sections. Since the near-resonant con-
dition is not satisfied in this case, the final-state distribution
is largely determined by the anisotropy of the PES. Since
inclusion of high-order anisotropic terms in the angular de-
pendence of the interaction potential is important for yield-
ing converged results on the BMKP PES (see Fig. 1), the
state-to-state cross sections are dominated by contributions
from high anisotropic terms. Since anisotropic terms beyond
λ1 = λ2 = 2 are not important for the Hinde PES, transitions
to final CMS (0600), (0602), (0604), and (0800) are signifi-
cantly suppressed for the Hinde PES compared to the BMKP
surface. For the other two initial states, energy and angular
momentum conservation factors dictate the overall quenching
cross section as explained above.

In an earlier quantum mechanical investigation using the
coupled-states approximation, Pogrebyna and Clary42 indi-
cated that the high anisotropic terms in the angular expansion
of the BMKP PES were primarily responsible for the large

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Collision Energy (eV)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

C
ro

ss
 s

ec
tio

n 
(1

0-1
6  c

m
2 )

Quéméner et al. (BMKP PES)
Quéméner et al. (BMKPE PES)
This work (Hinde PES)

FIG. 5. Inelastic cross sections for H2(v = 1, j = 0) + H2(v = 0, j = 0)
→ H2(v = 0) + H2(v = 0) collisions from ultracold to thermal energies.
The bold line corresponds to the Hinde PES while the thin solid and dashed
lines correspond, respectively, to the BMKP and BMKPE PESs (taken from
Ref. 41).

values of vibrational relaxation cross sections in collisions
of H2(v = 1, j = 0) with H2(v = 0, j = 0) evaluated using
this potential. Calculations using a less anisotropic version of
the potential, referred to as the BMKPE potential, in which
terms beyond λ1 = λ2 = 2 are omitted from Eq. (1) yielded
vibrational relaxation cross sections that are in better agree-
ment with experimental data. While the BMKPE potential
excludes high-order angular anisotropic terms it incorporates
the most important lowest-order quadrupole–quadrupole and
dispersion interactions.

In Fig. 5 we present a comparison of vibrational relax-
ation cross sections for H2(v = 1, j = 0) + H2(v = 0, j = 0)
collisions obtained from the Hinde PES and the BMKP and
BMKPE surfaces. It is seen that compared to the results on the
Hinde PES the BMKP surface yields relaxation cross sections
that are about an order of magnitude larger at energies below
0.1 eV. Interestingly, the BMKPE and Hinde PESs yield re-
sults within a factor of two with the Hinde potential yield-
ing lower values, except in the vicinity of a shape resonance
at 10−4 eV. This indicates that the less anisotropic BMKPE
PES may be more suitable for describing vibrational relax-
ation than the original BMKP PES. Figure 6 provides a com-
parison of the vibrational relaxation rate coefficients from the
three PESs with available experimental data. The Hinde po-
tential yields rate coefficients in closer agreement with exper-
iment than the BMKP and BMKPE potentials. The agreement
is particularly good for temperatures below 200 K. However,
results on the Hinde potential underestimate the experimen-
tal data at temperatures above 300 K. This could be because
the experimental results may include a thermal population of
rotational levels in v = 1 while our calculation is restricted
to the j = 0 level of the vibrationally excited molecule. In
constrast, the BMKP results are about an order of magni-
tude larger than the experimental data for temperatures below
300 K. We note that the less anisotropic BMKPE PES yields
rate coefficients in much better agreement with experiment
than the full anisotropic BMKP PES.
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The large values of vibrational relaxation cross sections
and rate coefficients from the BMKP PES compared to the
Hinde potential can easily be understood from the state-to-
state cross sections shown in the upper panel of Fig. 3 and dis-
cussion pertaining to it. Since low temperature cross sections
are generally strongly influenced by van der Waals forces, it
would also be useful to examine the interaction energies in the
van der Waals region for the different PESs. This is shown in
Fig. 7 for BMKP, BMKPE, Hinde, and DJ PESs as a function
of the center-of-mass distance between the two H2 molecules
for orientation angles θ1 = θ2 = 90◦ and φ = 0◦. The H–H
distance of the two H2 molecules is fixed at the vibrationally
averaged rigid rotor value of 1.449 a.u. (1 a.u. = 0.529 177 2
Å). It is seen that the DJ and Hinde PESs depict similar en-
ergy dependence and comparable van der Waals well depths
while the BMKP and BMKPE PESs display slightly different
energy dependence and deeper van der Waals wells. In partic-
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DJ (dotted curve) PESs as a function of R, computed for r1 = r2 = 1.449
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FIG. 8. Elastic cross section for H2(v = 1, j = 0) + H2(v = 0, j = 0) col-
lisions from ultracold to thermal energies. The thick curve corresponds to the
Hinde PES while the thin curve corresponds to the BMKP PES (taken from
Ref. 41).

ular, the BMKP/BMKPE PESs are characterized by a broader
van der Waals region compared to the Hinde and DJ poten-
tials. The rather limited accuracy of the BMKP PES near the
van der Waals well has been pointed out in recent works of
Hinde54 and Patkowski et al.53 Indeed, due to the low accu-
racy of ab initio points in the van der Waals region, Boothroyd
et al.50 used the rigid rotor potential of Schafer and Kohler66

in fitting the van der Waals part of the BMKP PES. The van
der Waals well of the BMKPE potential is slightly less deeper
than the BMKP potential and it is in better agreement with
the Hinde potential near the van der Waals minimum. This
might explain the overall good agreement between rate co-
efficients from BMKPE and Hinde PESs. The BMKP and
BMKPE potentials are very similar for R > 8 a.u. because
high anisotropic terms of the interaction potential do not con-
tribute at large intermolecular separations. Thus, the differ-
ence between the BMKP and BMKPE potentials appears to
be mainly centered around the van der Waals region, R = 6
− 8 a.u. A comprehensive study of the BMKP and BMKPE
surfaces and how they compare with the Hinde PES for var-
ious geometries, H–H separations, and intermolecular dis-
tances is beyond the scope of this paper.

B. Elastic scattering

Figure 8 provides a comparison of the elastic scatter-
ing cross section from the BMKP and Hinde PESs for H2

(v = 1, j = 0) + H2(v = 0, j = 0) collisions as a function
of the collision energy. It is seen that both PESs predict very
similar results for collision energies spanning seven orders
of magnitude, from the ultracold to thermal energy regime.
Even the resonance features in the cross sections are quite
well reproduced by the two PESs though their positions are
slightly shifted. The results show that the isotropic part of the
two PESs are similar and well characterized. Similar results
for collisions involving ground state molecules on the Hinde
and BMKP PESs and those of Lee et al. obtained using the
rigid rotor (RR) DJ PES are shown in Fig. 9. It is seen that
the Hinde and DJ PESs yield nearly identical results while
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the BMKP result shows discrepancies in the position and
magnitude of the shape resonance located at about 10−4 eV.
A comparison of elastic cross sections for H2(v = 0, j = 0)
+ H2(v = 0, j = 0) collisions from the Hinde, BMKP, and
DJ PESs with experimental data is given in Fig. 10. It shows
that the Hinde and DJ PESs yield results in better agreement
with experiment.

C. Rotational excitation

There have been several recent quantum studies of
rotational excitation in collisions of two ground state H2

molecules.36, 37, 41, 43, 45, 49, 52 Earlier studies36, 37, 52 have mostly
used the rigid rotor approximation while recent studies
using the BMKP PES by Otto et al.45 and Quéméner and
Balakrishnan41 have used full-dimensional quantum calcula-
tions. Figure 11 shows cross sections for rotational excitations
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and dashed curves, respectively, denote results obtained by Otto et al. (taken
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in collisions between two ground state para-H2 molecules.
Results for (0000) → (0002), (0004), (0204), and (0404) tran-
sitions from the present full-dimensional calculations using
the Hinde surface and those of Quéméner and Balakrishnan41

on the BMKP PES are compared with rigid rotor calculations
of Otto et al.46 and Lee et al.37 using the DJ PES. (In our
previous work41 we had pointed out some discrepancy with
the calculations of Otto et al.45 The source of the discrepancy
has now been identified46 and the corrected results of Otto
et al.46 are shown in Fig. 11). The rigid rotor results are nearly
identical for all transitions. It is seen that at low energies the
results obtained using DJ and Hinde PESs agree quite well
but discrepancies are observed at higher energies, particularly
for (0202), (0204), and (0404) final CMSs. Overall, the
BMKP results shows significant discrepancy with those
computed using the DJ and Hinde PESs, particularly at low
energies. As shown below, this has a significant effect on
low temperature rate coefficients computed using the BMKP
surface.

Figure 12 compares rate coefficients for (0000)
→ (0002) rotational excitation from full-dimensional calcu-
lations using the Hinde and BMKP PESs with the experi-
mental results of Maté et al.52 The BMKP results are taken
from previous work of Quéméner and Balakrishnan.41 It is
seen that the results on the Hinde PES agree reasonably well
with the experimental data while the BMKP surface predicts
about a factor of 5–10 smaller rate coefficients. Previous cal-
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culations using the DJ PES have shown that it yields results
in close agreement with experimental data for the 0 → 2 rota-
tional excitation.37 Thus, it appears that the BMKP PES needs
some additional constraints on its angular dependence to yield
reliable values of rotational and vibrational transition rate
coefficients.

IV. CONCLUSION

We have presented cross sections and rate coefficients
for rotational and vibrational transitions in collisions between
two H2 molecules. A full-dimensional quantum scattering
method without any angular momentum decoupling approxi-
mation is used for the calculations. A recent six-dimensional
potential energy surface for the H2–H2 system developed by
Hinde54 has been used in the calculations and comparisons
are made with results obtained using the more widely used
BMKP PES and its less anisotropic version referred to as the
BMKPE PES.

The paper presents several important results on the
H2–H2 system. First, it showed that a near-resonant energy
transfer mechanism for vibrational relaxation identified in our
previous study using the BMKP PES is also reproduced by the
Hinde PES. The mechanism approximately conserves the in-
ternal energy and fully conserves the total internal rotational
angular momentum of the two molecules. The present study
shows that the mechanism is largely insensitive to the details
of the interaction potential (including angular anisotropy) and
may be a general phenomenon observed in other dimer sys-
tems. It also shows that in instances where the above mech-
anism is not involved, vibrational relaxation is largely driven
by the angular anisotropy of the interaction potential.

Another key finding of our study is that the Hinde PES
predicts rate coefficients for vibrational relaxation in H2(v

= 1, j = 0) + H2(v = 0, j = 0) collisions in close agree-
ment with available experimental data. Interestingly, the vi-
brational relaxation rate coefficients obtained using the Hinde
PES agree more closely with those derived from the less
anisotropic BMKPE potential than with those derived from
the full BMKP PES. The latter predicts vibrational relax-
ation rate coefficients that are an order of magnitude greater
than experimental results as originally pointed out by Pogreb-
nya and Clary. The present study lends theoretical support to
the argument that high-order angular anisotropic terms of the
BMKP potential is responsible for the discrepantly large val-
ues of the relaxation rate coefficients using this PES.

Comparing the results obtained using the two full-
dimensional PESs (Hinde and BMKP) with those derived
from the rigid rotor DJ PES, we find that the agreement is
substantially better between the Hinde and DJ results than
between the BMKP and DJ results. Rate coefficients for the
0 → 2 rotational excitation computed using the Hinde PES is
found to be in good agreement with experimental data. Over-
all, it appears that the Hinde and DJ PESs yield more re-
liable values of rotational transition rate coefficients. Based
on the calculations presented here, we recommend the use of
the newer Hinde PES for calculations of rotational and vibra-
tional transitions in H2–H2 collisions, at least for vibrational
quantum numbers v < 2. Ab initio calculations of the Hinde
PES include only a limited range of H–H separations so its
accuracy for higher vibrational levels is uncertain.
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