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We report six-dimensional (6D) potential energy surface (PES) and rovibrational scattering cal-
culations for the CN–H2 collision system. The PES was computed using the high-level ab initio
spin-restricted coupled-cluster with single, double, and perturbative triple excitations-F12B method
and fitted to an analytic function using an invariant polynomial method in 6D. Quantum close-coupling
calculations are reported for rotational transitions in CN by H2 and D2 collisions in 6D as well as
four-dimensional (4D) within a rigid rotor model for collision energies of 1.0-1500 cm−1. Compar-
isons with experimental data and previous 4D calculations are presented for CN rotational levels j1

= 4 and 11. For the first time, rovibrational quenching cross sections and rate coefficients of CN
(31 = 1, j1 = 0) in collisions with para- and ortho-H2 are also reported in full-dimension. Agree-
ment for pure rotational transitions is found to be good, but no experimental data on rovibrational
collisional quenching for CN–H2 are available. Applications of the current rotational and rovibra-
tional rate coefficients in astrophysical modeling are briefly discussed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4971322]

I. INTRODUCTION

The hydrogen molecule is the dominant species in the vast
majority of interstellar environments, while the cyano radical
(CN) is also relatively abundant. Both may play important roles
in the physics and chemistry of diffuse clouds, for example.
CN is mainly observed via visible absorption in diffuse and
translucent clouds,1,2 and it is also detected in the millimeter
where it can be important in the chemistry of dense molecu-
lar clouds. Ever since it was identified by McKellar in 1940,3

CN has been detected in a variety of molecular clouds.4–8 For
example, Wootten et al.4 reported the first observations of the
N = 2−1 line at 226.9 GHz in the circumstellar envelope of
the carbon-rich star IRC + 10216 and in the Orion Molecu-
lar Cloud (OMC-1). CN is also believed to be an excellent
tracer of photodissociation regions (PDRs) which are envi-
ronments exposed to intense ultraviolet (UV) radiation.9,10 To
model the infrared radiation from CN in such environments
requires a rich variety of molecular data, including inelastic
rotational and vibrational collision rate coefficients, primarily
due to H2. However, because of the difficulty of measurements
of these quantities, numerical models often rely on theoreti-
cal rates. While state-to-state inelastic rotational (de)excitation
rate coefficients due to H2 collisions were measured for the
vibrationally excited state 31 = 2 by Brunet et al.,11 no data are
available for vibrationally inelastic transitions in CN induced
by H2.

Due to its fundamental and astrophysical importance,
the CN–H2 collisional system has been the subject of many

theoretical12–18 and experimental11,19 studies. An early four-
dimensional (4D) potential energy surface (PES) within the
rigid-rotor model was obtained by Kaledin et al.12 and applied
to a study of the spectroscopy of the CN–H2 van der Waals
complex. More recently, Kalugina et al.14,15 calculated a 4D
PES using the partially spin-restricted coupled-cluster with
single, double, and perturbative triple excitations (RCCSD(T))
method and an aug-cc-pVTZ basis set augmented by 3s, 2p,
1d bond functions. Fine- and hyperfine-resolved collisional
excitation calculations of CN (31 = 0) with para-H2 (32 = 0,
j2 = 0) were performed, but using a two-dimensional (2D) PES
obtained by averaging the 4D PES over the H2 angular degrees
of freedom. Later, the 4D PES of Kalugina et al.14,15 was used
in close-coupling (CC) calculations of rotational de-excitation
cross section of CN (31 = 0) by para- and ortho-H2.15 In both
PES and scattering calculations,14,15 fixed bond distances (i.e.,
equilibrium bond distance of CN at r1 = 2.2144 a0 and vibra-
tionally averaged bond distance of H2 at r2 = 1.4487 a0) were
adopted. Recently, the 4D PES of Kalugina and Lique was
also applied to calculate fine- and hyperfine-resolved rotational
excitation rate coefficients of CN with para- and ortho-H2

17

and of CN isotopologues, 13CN and C15N, by para-H2.18

To go beyond the rigid-rotor approximation, in this work
we have constructed a full dimensional (6D) PES for the
CN–H2 system and carried out comprehensive CC calcu-
lations of state-to-state cross sections in an effort to initi-
ate the development of a complete database of rovibrational
quenching rate coefficients. In Secs. II–V, the 6D PES calcu-
lations, the adopted scattering approach, and the results are
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discussed. Conclusions are presented in Sec. VI. Transitions
at the fine- or hyperfine-resolved level are not considered here.

II. THE POTENTIAL ENERGY SURFACE

The electronic ground state interaction potential of
CN–H2 was computed using the explicitly correlated coupled-
cluster (RCCSD(T)-F12B) method,20,21 with an aug-cc-pVTZ
basis,22 as implemented in MOLPRO 2010.1.23 The inter-
action energies were calculated using the supermolecular
approach in which the counter-poise (CP)24 correction was
employed to reduce the basis set superposition error (BSSE).25

To construct the PES, the computations were performed on
a 6D grid using Jacobi coordinates as shown in Fig. 1. The
radial coordinate R denotes the distance between the center-
of-masses of CN and H2, while r1 and r2 represent the bond
lengths of CN and H2, respectively. The angular coordinates
θ1 and θ2 denote, respectively, the angle between~r1 and ~R and
~r2 and ~R, while φ denotes the out-of-plane dihedral angle. For
the potential energy calculations, the bond lengths of H2 and
CN spanned the range 1.1011–1.8011 a0 and 2.0184–2.5184
a0, respectively. R is scanned from 5 to 21 a0 with a step-
size of 0.5 a0 for R < 8 a0 and 1.0 a0 for R > 8 a0. The
angle θ1 ranges from 0◦ to 180◦ with a step-size of 22.5◦, and
θ2 and φ have range 0◦ to 180◦ and 0◦ to 90◦, respectively,
with a step-size of 30◦. The range of r1 and r2 allows for
the treatment of vibrational excitation up to 31 = 2 for CN,
but only for 32 = 0 for H2, and as the bond lengths do not
approach dissociation, rearrangement channels (e.g., to form
HCN) are excluded from consideration on this PES. While
the barrier to reaction is around 1260 cm−1 (3.6 kcal/mol),
which is comparable to the CN (31 = 1) excitation energy,
CN plays the role of a spectator in the reaction dynamics
because the effective barrier at the saddle point increases by the
same energy as the CN (31 = 1) excitation energy. As a conse-
quence, reaction channels are not incorporated into the PES or
scattering.

An invariant polynomial method26,27 has been used to fit
the 6D CN–H2 interaction PES, which is expanded in the form

V (y1 · · · y6)=
N∑

n1 · · ·n6

cn1 · · ·n6 yn1
1 yn6

6

[
yn2

2 yn3
3 yn4

4 yn5
5 + yn5

2 yn4
3 yn3

4 yn2
5

]
,

(1)

where yi = e−0.5di is a Morse-type variable, di are the internu-
clear distances (in atomic units) between two atoms, d1 = dHH′ ,
d2 = dNH′ , d3 = dCH′ , d4 = dCH, d5 = dNH, and d6 = dCN. The

total power of the polynomial, N =
7∑

i=1
ni, was restricted to 7.

FIG. 1. The six-dimensional Jacobi coordinates for CN–H2.

TABLE I. Global and local minima on the 4D PESs. V in cm−1, R in bohr.

V6ES-4D Reference 15 Reference 12

Global V = −122.51 V = −121.36 −100.84
R = 7.21 R = 7.23 7.44

Local V = −81.98 V = −83.86 −68.44
R = 7.41 R = 7.39 7.52

The fit for the expansion coefficients cn1...n6 was performed
using a weighted least-squares method for interaction ener-
gies up to 3000 cm−1. The root-mean-square (RMS) error in
the PES fit was 3.67 cm−1, which included 84 734 ab initio
points. The 6D interaction PES, V (R, r1, r2, θ1, θ2, φ), hereafter
referred to as V6ES, can be averaged over the ground-state or
excited vibrational wave functions of CN and H2 to obtain 4D
vibrationally averaged PESs, V (R, θ1, θ2, φ). However, V6ES
was used in the majority of the scattering calculations. The
comparison of the global and local minima on the vibrationally
averaged V6ES-4D PES and the 4D PESs of Kalugina et al.15

and Kaledin et al.12 is given in Table I. Note that this is
not an exact comparison as the 4D PESs were constructed
differently.

Some features of the fitted V6ES PES are illustrated in
Figs. 2–4. Fig. 2 displays the R dependence of V6ES for various
angles and bond distances fixed at r1 = re(CN) = 2.2144 a0

and r2 = re(H2) = 1.4011 a0. The computed ab initio potential
energy points are also displayed as symbols. Fig. 3 shows two-
dimensional contour plots in θ1 and θ2 for the V6ES PES. The
CN and H2 bond lengths are fixed at their equilibrium distances
for R = 3.0, 3.5, 4.0, and 6.0 Å, φ = 0◦, 45◦, and 90◦. This figure
can be compared to Fig. 3 of Kalugina et al.15 and Fig. 2
of Kaledin et al.14 The current Fig. 4 depicts the anisotropy
of the V6ES potential in θ1 for various φ. Here θ1 describes
the orientation of CN; the anisotropy with respect to θ1 is
large.

FIG. 2. R dependence of the interaction potential V6ES for representative
slices with bond lengths fixed as indicated in the text and (θ1, θ2, φ)
= (0◦, 0◦, 0◦), (180◦, 0◦, 0◦), (180◦, 90◦, 0◦), and (90◦, 90◦, 90◦). V6ES
fit (lines), computed ab initio energy points (symbols).
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FIG. 3. Contour plots of θ1 and θ2. CN and H2 bond distances r1 = 2.2144 and r2 = 1.4011 a0. The rows correspond to R = 3.0, 3.5, 4.0, and 6.0 Å, while the
columns correspond to φ = 0◦, 45◦, and 90◦.

III. SCATTERING METHODS
In the quantum-mechanical description of inelastic molec-

ular scattering, the theory for the collision of two 1Σ

diatomic molecules within the rigid rotor and vibrating
rotor models was developed28–31 based on the close-coupling

(CC) formulation of Arthurs and Dalgarno.32 Recently the
theory has been implemented for the full-dimensional study
of the vibrationally inelastic scattering between two diatomic
molecules.33–35 Here, we apply this formalism for the
CN + H2 system by approximating CN as a 1Σ molecule,
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FIG. 4. Comparison of the θ1 dependence of the V6ES surface for φ = 0◦,
45◦, 90◦, 135◦, and 180◦. R = 6.0 a0, θ2 = 45◦, r1 = 2.2144 a0, and r2
= 1.4011 a0.

hence the rotational quantum number N1 = j1 since
we neglect spin. In the scattering calculations, the inter-
action PES V (R, r1, r2, θ1, θ2, φ) was expanded in the
form

V (R, r1, r2, θ1, θ2, φ) =
∑

λ1λ2λ12

Aλ1,λ2,λ12 (r1, r2, R)

×Yλ1,λ2,λ12 (r̂1, r̂2, R̂), (2)

where Yλ1,λ2,λ12 is a bi-spherical harmonic function given by

Yλ1,λ2,λ12 (r̂1, r̂2, R̂) =
∑

mλ1 mλ2 mλ12

〈
λ1mλ1λ2mλ2

��λ12mλ12

〉
×Yλ1mλ1

(r̂1)Yλ2mλ2
(r̂2)Y ∗λ12mλ12

(R̂), (3)

where 0 ≤ λ1 ≤ 8, 0 ≤ λ2 ≤ 4, and only even values of λ2

are retained due to the symmetry of H2.
We use the term combined molecular state (CMS) to

describe a combination of rovibrational states of the CN–H2

scattering system. A CMS, denoted as (31 j132 j2), represents
a unique quantum state before or after a collision: 3 = 3132 and
j = j1 j2 denote the vibrational and rotational quantum numbers
of the two molecules.

The rovibrational state-to-state cross section as a function
of collision energy E is given by

σv1j1v2j2→v′1j′1v
′
2j′2

(E) =
π

(2j1 + 1)(2j2 + 1)k2

×
∑

j12j′12ll′JεI

(2J + 1)|δv1j1v2j2l,v′1j′1v
′
2j′2l′

− SJεI
v1j1v2j2l,v′1j′1v

′
2j′2l′(E)|2, (4)

where (31j132j2) and (v ′1j′1v
′
2j′2) denote the initial and final

CMSs, respectively, and l is the orbital angular momentum
quantum number. The total angular momentum of the colli-
sion system is given by ~J = ~l +~j12 with ~j12 = ~j1 +~j2 and

k =
√

2µE/~2 is the wave vector with respect to the initial
channel.

For a given H2 transition, j2 → j′2, the total vibra-
tional quenching cross section of CN from v1 → v ′1 can be
obtained by summing over the final rotational levels j′1 of CN
in vibrational state v ′1,

σT
v1j1v2j2→v′1v

′
2j′2

(E) =
∑

j′1

σv1j1v2j2→v′1j′1v
′
2j′2

(E). (5)

In this work, H2 is taken to remain in its ground vibrational
state, v2 = v

′
2 = 0. However, the CN total vibrational quench-

ing cross sections were calculated for both elastic (j′2 = j2) and
inelastic (j′2 , j2) H2 transitions.

All CC scattering calculations were carried out using the
TwoBC code36 with the coupled-channel equations propagated
using the log-derivative method of Johnson37 and Manolopou-
los38 with a radial step-size of ∆R = 0.05 a0 and the range of
R propagation from 5 to 21 a0. The number of discrete vari-
able representation points N r1 and N r2; the number of points
in θ1 and θ2 for Gauss-Legendre quadrature, Nθ1 and Nθ2 ;
and the number of points in φ for Chebyshev quadrature, Nφ ,
used to project out the potential expansion coefficients are pre-
sented in Table II. The basis sets used in the pure rotational
and rovibrational scattering calculations are also presented in
Table II.

The state-to-state rate coefficients at a temperature T
can be obtained by thermally averaging the corresponding
integral cross sections over a Maxwellian kinetic energy
distribution,

kv1j1v2j2→v′1j′1v
′
2j′2

(T ) =

(
8

πµβ

)1/2

β2
∫ ∞

0
Eσv1j1v2j2→v′1j′1v

′
2j′2

(E)

× exp (−βE)dE, (6)

TABLE II. Parameters used in the TwoBC scattering calculations.

Basis seta Nθ1 Nθ2 Nφ Nr 1 Nr 2 λ1 λ2

6D rotational calculation

para-H2–CN j1 = 20, j2 = 2 12 12 8 18 18 8 4
ortho-H2–CN j1 = 20, j2 = 3 12 12 8 18 18 8 4

6D rovibrational calculation

para-H2–CN [(0,22; 1,20) (0,2)] 12 12 8 18 18 8 4
para-H2–CN [(0,22; 1,20) (0,3)] 12 12 8 18 18 8 4

aBasis set [(31 = 0,j31 = 0; 31 = 1,j31 = 1) (32 = 0,j32 = 0)] is presented by the maximum rotational quantum number j31 and j32

included in each relevant vibrational level 31 and 32 for CN and H2, respectively.
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where µ is the reduced mass of the CN–H2 complex,
β = (kBT )−1, and kB is Boltzmann’s constant.

IV. RESULTS
A. Pure rotational scattering

We first consider the rotational transitions of CN in col-
lisions with H2 and D2 when the molecules remain in their
ground vibrational states v1 = v2 = v

′
1 = v

′
2 = 0,

CN(v1 = 0, j1) + H2(v2 = 0, j2) → CN(v ′1 = 0, j′1)

+H2(v ′2 = 0, j′2),

and

CN(v1 = 0, j1) + D2(v2 = 0, j2) → CN(v ′1 = 0, j′1)

+D2(v ′2 = 0, j′2).

Full-dimensional calculations using TwoBC with V6ES
and rigid rotor approximation calculations using MOLSCAT39

with vibrationally averaged 4D PESs have been performed to
obtain the rotational excitation and de-excitation cross sections
of CN in collisions with H2. For CN with D2, only rigid-rotor
approximation calculations using vibrationally averaged 4D
PESs are carried out. Three vibrationally averaged 4D PESs
in the CN ground and excited vibrational states 31 = 0, 1, and 2,
referred to as V4H2-0, V4H2-1, and V4H2-2, are computed for
CN–H2. For CN–D2, the vibrationally averaged 4D PESs are
referred to as V4D2-0, V4D2-1, and V4D2-2. In constructing
these 4D PESs, H2 and D2 are in their ground vibrational state
32 = 0.

The initial rotational state of CN was taken to be j1 = 4
and 11 to make comparisons with available measurements as
described below. For para-H2 and ortho-D2, rotational levels
j2 = 0 and 2 were included in the basis set while for ortho-H2

and para-D2, j2 = 1 and 3 were included.
Rotational excitation and de-excitation cross sections of

CN (31 = 0,j1 = 4) in collisions with para-H2 (32 = 0,j2

= 0, 2) and ortho-H2 (v2 = 0,j2 = 1) have been computed

for collision energies ranging from 1.0 to 1500 cm−1. In
Figs. 5–7, the calculated de-excitation cross sections using
V6ES and V4H2-0 are compared with the 4D results of Kalug-
ina et al.15 It can be seen that the 6D V6ES and 4D V4H2-0
PESs yield nearly identical results. The cross sections for de-
excitation from j1 = 4 are seen to be in good agreement with
the results of Kalugina et al.

Brunet et al.11 measured the rotational inelastic, but
vibrationally elastic, state-to-state rate coefficients of CN
(X 2Σ+, v1 = 2) due to collisions with normal H2 and D2.
For comparison, the state-to-state rotational excitation and de-
excitation rate coefficients of CN (31 = 0,j1 = 4 and 11) in
collisions with H2 and D2 with 32 = 0, j2 = 0, 1, 2 are computed
using Eq. (6). The Boltzmann average, over the H2 and D2

rotational levels, of the state-to-state rate coefficients k( j1j2)
was then obtained with the partition function Q of the first
three rotational states of H2 and D2 ( j2 = 0, 1, 2) and given
by

k( j1) =

∑2
j2=0 wj2 (2j2 + 1)e−εj2/kT k( j1j2)

Q
, (7)

where

Q =
2∑

j2=0

wj2 (2j2 + 1)e−εj2/kT , (8)

k( j1j2) is the rate coefficients from initial CMS (0j10j2),
ε j2 = B0j2( j2 + 1), the rotational constant B0 is 59.3219 cm−1

for H2 and 29.9043 cm−1 for D2, and w j2 is the spin degener-
acy, w j2 = 3 for ortho-H2 and para-D2 and 1 for para-H2 and
ortho-D2.

In Figs. 8 and 9 we compare the present rate coefficients
with measurements11 and the theoretical results of Kalugina
et al.15 For collisions with normal H2 and j1 = 4, the results
of full-dimensional calculations using V6ES and rigid-rotor
approximation calculations using vibrationally averaged PESs
V4H2-0, V4H2-1, and V4H2-2 are displayed in Fig. 8(a).
The 4D PESs yield very similar scattering results, which are
also comparable to the 6D results. Due to the degeneracy

FIG. 5. Rotational de-excitation cross
sections for CN (31 = 0, j1 = 4) + H2 (32
= 0, j2 = 0) → CN (v′1 = 0, j′1) + H2 (v′2
= 0, j′2 = 0), j′1 = 0, 1, 2, and 3 with initial
CMS (0400). Current 6D (lines) and 4D-
0 (triangles) results and 4D calculations
of Ref. 15 (circles).
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FIG. 6. Same as Figure 5 except for j2
= j′2 = 1, i.e., initial CMS (0401).

factors and assumed relative rotational populations given by
Equation (7), the rate coefficients for normal-H2 are domi-
nated by ortho-H2 transitions. Therefore, while Fig. 5 dis-
plays an even ∆j1 propensity rule for para-H2, applica-
ble for a near-homonuclear molecule like CN, an exponen-
tial energy-gap-law behavior is evident for ortho-H2 cross
sections in Fig. 6. As a consequence, any evidence of
an even ∆j propensity is washed-out in Fig. 8 with the
result that ∆j1 =±1 dominates. For j1 = 11, presented in
Fig. 8(b), the even ∆j1 propensity is partially recovered,
though ∆j1 =±1 transitions give the largest rate coefficients.

For both j1 = 4 and 11, the comparison of the present
rate coefficients with experiment and the theoretical results of
Kalugina et al.15 shows good agreement particularly in light of
the fact that this is an absolute value comparison. The exception

occurs for ∆j1 = ±1 transitions where noticeable differences
are found between the experiment and all calculations. The cal-
culations of Kalugina et al.15 are somewhat closer to the mea-
surements which are mostly due to their slightly larger (0401)
to (0301) cross section (see bottom right panel of Fig. 6).

Fig. 9 shows similar comparisons between our the-
oretical results of CN in collision with D2 and mea-
surements.11 The results from three vibrationally aver-
aged 4D PESs, V4D2-0, V4D2-1, and V4D2-2 are very
similar for both j1 = 4 and 11, except that V4D2-2
gives smaller rate coefficients for ∆j1 =±1 transitions.

While the measurement was performed for vibrationally
excited CN (31 = 2), calculations which used 31 = 0, though
for vibrationally averaged PESs, are not direct comparisons.
We explored whether this was an issue by repeating our 4D

FIG. 7. Same as Figure 5 except for j2
= j′2 = 2, i.e., initial CMS (0402).
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FIG. 8. Inelastic rotational rate coefficients for CN at T = 295 K for a statis-
tical population of H2 (32 = 0,j2 = 0, 1), i.e., normal-H2. (a) j1 = 4, (b) j1 = 11.
Experiment11 31 = 2 (solid circles), 4D theory15 31 = 0 (stars), and current 6D
and 4D theory 31 = 0 (open triangles and open circles), 31 = 1 (open squares),
and 31 = 2 (open diamonds).

calculations on 31 = 1 and 2 vibrationally averaged PESs. Figs.
8 and 9 demonstrate that rotational transitions are nearly inde-
pendent of 31, except as noted above, the ∆j1 = ±1 transitions
are somewhat smaller for D2 collisions on the V4D2-2, i.e.,
31 = 2 surface. This might be related to the partial recovery
of an even ∆j1 propensity for ortho-D2 collisions. Never-
theless, it appears that CN is sufficiently harmonic whose
dependence on 31 for pure rotational transitions is small.

FIG. 9. Inelastic rotational rate coefficients for CN at T = 295 K for a sta-
tistical population of D2 (32 = 0, j2 = 0, 1), i.e., normal-D2. (a) j1 = 4, (b) j1
= 11. Experiment11 31 = 2 (solid circles) and current 4D theory 31 = 0 (open
circles), 31 = 1 (open squares), and 31 = 2 (open triangles).

Returning to the experiment, they were state-to-state mea-
surements performed by laser probing the CN level popu-
lations and then using a master equation analysis to extract
rate coefficients. For v1 > 0, the level populations may also
be quenched by reactive scattering to H + HCN and vibra-
tional de-excitation, which are not considered in the exper-
imental modeling. Vibrational quenching is typically many
orders of magnitude smaller than rotational quenching but may
become competitive for a quasi-resonant transition as found for
CO–H2

35 (e.g., the 1002→ 0006 + 83 cm�1 transition, in CMS
notation). For CN–H2, the quasi-resonant transitions 1002
→ 0006− 18 cm�1 and 2002→ 1006� 45 cm−1 are potentially
relevant to the Brunet et al.11 measurements. Both processes
are slightly endoergic and will be studied in future work.

B. Scattering calculations for vibrational quenching

Full-dimensional quantum CC calculations of rovibra-
tional cross sections were carried out for initial CMSs (100j2),
for para-H2 ( j2 = 0) and ortho-H2 ( j2 = 1) with collision
energies ranging from 1 to 1000 cm−1. In Figs. 10 and 11 the
state-to-state quenching cross section to final states (0j′10j2),
j′1 = 0, 2, 4, . . ., 24 are shown for para- and ortho-H2, respec-
tively, where j2 = j′2. The cross sections have similar behavior
and display resonances at low energies due to quasibound
states of the collision complex. Small |∆j1 | = | j′1 − j1 | transi-
tions dominate the quenching with the cross sections generally
decreasing with increasing j′1 with that for j′1 = 0 being the
largest. This indicates that the cross section is dominated by
the strength of the interaction terms Aλ1,λ2,λ12 and not by the
asymptotic channel energy gaps.

The total cross sections σT
v1j1v2j2→v′1v

′
2j′2

(E) for CN vibra-

tional quenching from v1 = 1 → v ′1 = 0 are given in Fig. 12.
Fig. 12(a) shows the total cross section from (1000) to CN
(v ′1 = 0) + para-H2 (j′2 = 0, 2), while Fig. 12(b) displays the
total cross section from (1001) to CN (v ′1 = 0) + ortho-H2

(j′2 = 1, 3). The total vibrational quenching cross section dis-
play orbiting resonances between collision energies of 1.0 and
100 cm−1. However, the magnitude of the resonances are sup-
pressed for H2 elastic processes, j2 = j′2. For both the para- and

FIG. 10. State-to-state cross sections for the vibrational quenching of CN
from (31 = 1,j1 = 0) to (v′1 = 0, j′1), j′1 = 0, 2, 4, . . ., 24, due to para-H2
(32 = 0, j2 = 0) collisions, or in CMS notation (1000)→ (0j′100), j2 = j′2 = 0.
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FIG. 11. State-to-state cross sections for the vibrational quenching of CN
from (31 = 1, j1 = 0) to (v′1 = 0, j′1), j′1 = 0, 2, 4, . . ., 24, by ortho-H2 (32 = 0,
j2 = 1), or in CMS notation (1001)→ (0j′101), j2 = j′2 = 1.

ortho-H2 cases, the total vibrational quenching cross sections
for elastic H2 processes are nearly an order of magnitude larger
than that for collisions involving inelastic H2 transitions.

Total rate coefficients for the vibrational quenching of CN
from (1000) to CN (v ′1 = 0) + para-H2 ( j′2 = 0 and 2) and from
(1001) to CN (v ′1 = 0) + ortho-H2 ( j′2 = 1 and 3) are displayed
in Fig. 13 for temperatures ranging from 5 to 300 K. The trends
are similar to that given for the cross sections in Fig. 12. The
total vibrational quenching rate coefficients of CN for ∆j2 = 0
are nearly an order of magnitude larger than the results for
∆j2 = 2. For the quenching due to para-H2 collisions, as
shown in Fig. 13(a), between 5 and ∼100 K, the rate coeffi-
cients generally decrease weakly with increasing temperature,
while weak oscillatory temperature dependences are exhib-
ited due to the presence of resonances. For temperatures above

FIG. 12. Total cross sections for the vibrational quenching of CN (a) from
(1000) to CN (v′1 = 0) + para-H2 ( j′2 = 0 and 2). (b) From (1001) to CN
(v′1 = 0) + ortho-H2 ( j′2 = 1 and 3).

FIG. 13. Total rate coefficients for the vibrational quenching of CN com-
pared to the same transitions for CO from Ref. 35. (a) From (1000) to v′1 = 0
+ para-H2 (v2 = 0,j′2 = 0, 2). (b) From (1001) to v′1 = 0 + ortho-H2 (v2 = 0,
j′2 = 1, 3).

∼100 K, the rate coefficients increase with increasing temper-
ature. The trends for ortho-H2 are very similar to those noted
for para-H2 collisions. CO–H2 rate coefficients35 for the same
transitions are typically factors of ∼5-10 smaller, as shown in
Fig. 13. The smaller CO–H2 rate coefficients are likely related
to the fact that the CN–H2 potential is more anisotropic, e.g.,
with global and local minima deeper by 38.69 and 11.12 cm−1,
respectively.

V. DISCUSSION

As highlighted in the Introduction, in astrophysical envi-
ronments with intense UV fields, the radiation can drive the
chemistry and internal level populations out of equilibrium.
In such situations, a photodissociation region (PDR) resides
at the interface of the hot H ii region and the cold molecular
region. Sternberg and Dalgarno40 investigated the production
of gas-phase atomic and molecular species in dense molec-
ular clouds and identified molecular diagnostics of photon-
dominated chemistry. It was illustrated that CN was formed
by photodissociation of HCN, HCN + ν→CN + H, and by
the reactions NO + C → CN + O and C + N → CN + ν.
Minor production of CN can also be obtained from dissocia-
tive recombination H2CN+ + e → CN + H2. The CN abun-
dance strongly depends on the UV radiation and increases in
PDRs as the HCN photodissociation rate increases. Hence,
CN emission lines may serve as useful diagnostics of
PDRs.

Rodriguez-Franco and Martin-Pintado9 reported the
observations of the CN 1-0 and 2-1 rotational emission towards
the Orion A molecular complex and showed that the ionized
gas of the H II region dominated the morphology of the CN
emission. Aalto et al.10 detected CN 1-0 and 2-1 line emission
in IR luminous galaxies and found that CN emission required
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high density, n > 104 cm−3. Therefore CN is expected to be a
good tracer of high density regions and cold dense molecular
clouds. This was also confirmed by Hakobian and Crutcher41

in their multi-species study of structure and composition of
molecular clouds through the CN Zeeman transitions. Finally,
Podio et al.42 argue that high j1 lines, particularly the 5-4, are
unique tracers of embedded disks of young stellar objects, such
as T Tau N.

We are, however, unaware of any CN vibrational tran-
sition observations though it is predicted to be abundant in
models of protoplanetary disks43 and in the outflows of giant
C- and O-rich evolved stars.44,45 It is anticipated that vibra-
tional emission lines can probe the hot inner wind regions of
the outflows and therefore provide information on the stellar
mass-loss rates.44 With the upcoming launch of NASA’s James
Webb Space Telescope, the CN vibrational bands will become
observable allowing astronomers to see deep into warm regions
of these objects, particularly where the vibrational lines can be
pumped by intense ultraviolet radiation. The collisional data
computed here will be critical for models of such near infrared
observations.

VI. CONCLUSION

Accurate collisional rate coefficients for CN due to H2,
needed for astrophysical modeling, are currently lacking for
vibrationally excited CN. Quantum scattering calculations are
the primary source of such rate coefficients, but accurate val-
ues that explicitly consider all six internal degrees of freedom
of the CN–H2 complex have not been reported due to the
difficulty of the computations. We performed the first full-
dimensional quantum dynamics calculations for inelastic rovi-
brational transitions of CN in collisions with H2 using a high-
level 6D PES. The PES was fitted with an invariant polynomial
approach with an RMS error of less than 3.8 cm−1. Cross
sections and rate coefficients for rotational (de)excitation of
CN due to H2 and D2 collisions were studied using the new
6D PES for excited initial rotational levels of CN ( j1 = 4
and 11). Good agreement with the results of previous theo-
retical and experimental studies confirms the accuracy of the
current PES fit and scattering calculations. We have carried
out the first calculations of rovibrational quenching of CN
(31 = 1, j1 = 0) in collisions with H2 (32 = 0,j2 = 0, 1, 2) on the
new 6D PES. To aid in astrophysical modeling, computations
are in progress for a more highly excited vibrational level of
31 = 2 of CN.

SUPPLEMENTARY MATERIAL

See supplementary material46 for a Fortran subroutine to
generate V6ES PES.
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