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ABSTRACT
It is well-known that resonances can serve as a catalyst for molecule formation. Rate constants for resonance-induced molecule formation
are phenomenological as they depend upon the mechanism used to populate the resonances. Standard treatments assume tunneling from the
continuum is the only available population mechanism, which means long-lived quasibound states are essentially unpopulated. However, if
a fast resonance population mechanism exists, the long-lived quasibound states may be populated and give rise to a substantial increase in
the molecule formation rate constant. In the present work, we show that the semiclassical formula of Kramers and ter Haar [Bull. Astron.
Inst. Neth. 10, 137 (1946)] may be used to compute rate constants for radiative association in the limit of local thermodynamic equilibrium.
Comparisons are made with quantum mechanical and standard semiclassical treatments, and results are shown for two limits which provide
upper and lower bounds for the six most important radiative association reactions leading to the formation of CO, CN, and SiN. These results
may have implications for interstellar chemistry in molecular clouds, where the environmental and thermodynamic conditions often are
uncertain.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5090587

I. INTRODUCTION

The chemistry taking place in the interstellar medium has a
great impact on the evolution of molecular clouds into new stars
and planetary systems.1 That is because during the gravitational
contraction, the gas is heated due to the individual molecules’
gain in kinetic energy as they “fall” toward the gravitational cen-
ter of the interstellar cloud. Excess heat needs to be released to
sustain the contraction into a new star. Through their rovibra-
tional modes, molecules are efficient radiators at the wavelengths
corresponding to the typical temperatures of a contracting molec-
ular cloud. Thereby, molecules act as vital coolants in star form-
ing processes as they transform gravitational energy into radiation
energy.

Formation and destruction of molecules in the interstellar
medium can happen in several ways. One mechanism of molecule
formation is the radiative association reaction

A + B→ AB + ̵hω, (1)

where two colliding fragments A and B emit a photon during the
encounter and thereby rid themselves of enough energy (̵hω) to
stabilize. Radiative association has very small rate constants for
all molecular systems, and it can be ignored under atmospheric
density conditions since other mechanisms of molecule formation
that involves three body encounters will dominate. In the inter-
stellar medium, however, the densities are often about 10−15 times
that of our atmosphere. It is an exotic environment and radiative
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association plays a role, especially in regions where grains (dust
particles) are rare.2

As the cross sections and rate constants are so small for radia-
tive association, they are difficult to measure in a laboratory. Direct
measurements have only been pursued with a handful of ionic
species.3 For neutral species and most ionic species, theoretical cal-
culations need to be performed to provide astrochemists with data.
Methods for calculation of radiative association rate constants have
been developed over the past several decades. For the formation of
diatomic molecules, see, e.g., the review by Nyman et al.4 and refer-
ences therein. Also, a few triatomic systems have been studied theo-
retically, e.g., Refs. 5–7. Whether the formed molecule is a diatom or
a triatom, the computed cross sections are almost always full of sharp
features, stemming from scattering resonances. These typically play
a large role at low energies and thereby also in rate constants at low
temperatures.

In the standard treatment of resonances, it is assumed that qua-
sibound states may be populated through tunneling from the con-
tinuum. There are also Feshbach-type resonances where the system
reaches a quasibound state through coupling between different elec-
tronic states. Studies of Feshbach resonances in radiative association
have been performed, e.g., spin-orbit and rotational couplings,8 but
are rather limited. The main conclusions of the present work may
be expected to hold also for Feshbach resonances, but none of our
test systems involve them, so we will limit our discussion to shape
resonances.

The role of shape resonances in molecule formation has
recently been investigated for H2, SiO, and CS molecules.9–14 It
was shown that the choice of kinetic model can lead to mecha-
nisms which compete with the standard treatment of populating
the quasibound states and may result in a larger phenomenolog-
ical rate constant. The upper limit of this increased rate constant
is reached when the quasibound states are populated according to
thermal equilibrium with the surrounding environment. This has
been referred to as the local thermodynamic equilibrium (LTE) rate
constant. The standard resonant treatment provides a lower limit,
referred to as the non-LTE zero-density limit (NLTE-ZDL) rate con-
stant, due to the absence of all population mechanisms (radiative
as well as collisional) other than tunneling. In the LTE limit, the
dominant population mechanism is likely to be three-body colli-
sions. Therefore, it has been suggested13 that the LTE rate constant
for radiative association (RA) may be used to estimate three-body
recombination (TBR) rates at the critical density15 where collisional
and radiative rates are the same. Since TBR rate constants are gen-
erally more challenging to compute than RA rate constants, it is
desirable to calculate RA rate constants in both thermodynamic
limits.

In this work, we revisit the role of resonances for the
three molecules carbon monoxide (CO), cyano radical (CN), and
silicon mononitride (SiN). The standard resonant treatment for
these molecules has been reported previously.16–18 Using the same
molecular data, we carry out the present studies on the six reactions

C(3P) + O(3P)→ CO(A1Π)→ CO(X1Σ+
) + hν , (2)

C(3P) + O(3P)→ CO(21Σ+
)→ CO(X1Σ+

) + hν , (3)

C(3P) + O(3P)→ CO(X1Σ+
)→ CO(X1Σ+

) + hν , (4)

C(3P) + N(4S)→ CN(A2Π)→ CN(X2Σ+
) + hν , (5)

Si(3P) + N(4S)→ SiN(A2Π)→ SiN(X2Σ+
) + hν , (6)

Si(3P) + N(4S)→ SiN(X2Σ+
)→ SiN(A2Π) + hν , (7)

which are the most important reactions for RA of the three
molecules.16–18

II. THEORY
In the standard treatment of radiative association,5,19 the for-

mation process is divided into a direct and resonance mediated
part as illustrated in Fig. 1. The direct process can often be well
characterized with classical (CL) dynamics. For the case when the
radiative association proceeds on one potential energy curve, as
in Fig. 1, the direct radiative association can be computed with a
method where both the atomic motion and the radiation are clas-
sical (CL).20 If radiative association also involves a change in the
electronic state, then the semiclassical (SC) method18,21 is appropri-
ate for diatomics, as well as semiclassical surface-hopping,22 which
appears to work also for the formation of polyatomics. Apart from
molecule formation rate constants, those methods also allow for
computation of emission spectra.22–24 The standard semiclassical
method for diatomic molecules may be modified so that it accounts
for dynamics in the phase space behind the barrier by assuming
the barrier is perfectly transparent. This simplified semiclassical
(SC) method, which is described in Sec. II A, was first given by
Kramers and ter Haar.25 The simplified SC method is normally
considered a poor approximation for systems which possess large
barriers due to the assumption that quasibound states are popu-
lated only through tunneling. When this assumption is removed and
fast mechanisms for populating the quasibound states are consid-
ered, the accuracy and utility of the simplified SC method should
be reevaluated. As described below, we find that the simplified SC
method performs surprisingly well when used in the appropriate
thermodynamic limit.

FIG. 1. Schematic figure showing a potential energy curve and direct vs reso-
nance mediated radiative association. The dotted green line is an energy level
corresponding to a quasibound state, and the red solid line is for a true bound
state. The barrier can be in the potential energy curve itself or a centrifugal barrier.
The bound state may also be formed on a different potential energy curve.
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The resonance mediated process is typically treated with the
Breit-Wigner (BW) method, which will be outlined in Sec. II B.
The BW rate constant may be derived by performing the ther-
mal velocity integration analytically using a Lorentzian shape for
the cross section. The Lorentzian width typically includes radia-
tive broadening in order to ensure unitarity and avoid the so-
called breakdown of perturbation theory which would otherwise
occur for long-lived quasibound states.19 If a competing kinetic
mechanism is available, however, which is faster than the tunnel-
ing rate, then the population of quasibound states would increase
and may give rise to a substantial increase in the rate con-
stant.10 If the competing mechanism is also faster than the radia-
tive rate, then the population of quasibound states may reach the
LTE limit.

The LTE and NLTE-ZDL rate constants represent limiting
cases for the steady-state solution of a governing master equation
which includes the various mechanisms that may be important for a
given system. The master equation has been expressed in a square-
integrable Sturmian basis set which includes transitions between
all bound and unbound states, including long-lived quasibound
states and discretized nonresonant states. This approach,9–11 which
is referred to as the Sturmian quantum kinetic theory (SQKT), is
described in Sec. II C.

In previous work,12,13 it was shown that the NLTE-ZDL
rate constant computed by SQKT agrees well with the standard
quantum rate constant computed using perturbation theory on a
coarsely spaced energy grid and also with the semiclassical rate
constant when the resonant contribution is small. In the present
work, we find that the simplified SC rate constants agree very
well with the LTE rate constants computed using the SC + BW
and SQKT methods. The agreement improves when the potential
energy curve of the entrance channel supports many quasibound
states. Therefore, the simplified SC method adds another viable
approach to the list of methods that are useful for computing RA
rate constants under appropriate thermodynamic conditions. In
Secs. II A–II C, we outline the different methods and provide
numerical comparisons.

A. Standard and simplified SC rate constants
Semiclassical (SC) approaches for radiative association are

appropriate when the radiation gives a change in the electronic
state of the molecular system.4 In the standard SC method for
diatomics,18,21,25 only the region of phase space at R outside the
outer classical turning point is accounted for, i.e., the blue, contin-
uum region in Fig. 1. In the simplified SC formula also, the region
of phase space where quasibound states exist, i.e., the green dotted
region in Fig. 1, is accounted for. Thus, it is expected to account for
both direct and resonant radiative associations. The simplified SC
formula was first derived by Kramers and ter Haar25 and has later
been rederived.21,26,27 It has been tested for the essentially nonreso-
nant radiative association reactions of HF in Ref. 23 and of H+

2 in
Ref. 28. In the work on H+

2 , a correction of the simplified SC for-
mula introduced by Bates21 was investigated. The recommendation
in Ref. 28 was that some care to include the Bates correction term
should be exercised when applying the simplified SC formula to prob-
lems with significant barriers. We have not investigated Bates’ cor-
rection in this work. Finally, a version of the simplified SC formula

that is appropriate for dimer contributions in interaction-induced
spectra has also been developed in recent years.29

The term simplified refers to that the evaluation of the rate con-
stant is more straight forward than that of the standard formula. In
the former, there is only a radial integral that has to be computed
numerically, while in the latter, a three dimensional integral, over
radial distance, R, kinetic energy, and impact parameter, has to be
computed. The simplified SC rate constant for radiative association
of a diatomic molecule at temperature T is

kC→C′(T) = 4πPΛS ∫
∞

0
R2AC→C′(R) e−βVC(R)

× [ fb(βVC′(R)) − fb(βVC(R))]dR, (8)

where

fb(y) =
⎧
⎪⎪
⎨
⎪⎪
⎩

0 if y > 0
2√π ∫

−y
0
√

xe−xdx otherwise
(9)

is the incomplete gamma function. VC(R) is the potential energy
curve as a function of the interatomic distance, R, for molecular state
C. β = 1/kBT, where kB is the Boltzmann constant. Unprimed and
primed subscripts correspond to initial and final states, respectively,
so that, for example, C and C′ are 21Σ+ and X1Σ+, respectively, for
reaction (3). The term f b(βVC ′ ) in the brackets serves to include
radiative transitions to bound states only, i.e., it excludes radiative
quenching, while −f b(βVC) excludes transitions from bound states
on the upper potential. The transition probability is defined as21,30

AC→C′(R) =
4

3c3̵h(4π�0)
(

2 − δ0,Λ+Λ′

2 − δ0,Λ
)ω3

C→C′(R)D2
CC′(R), (10)

where

ωC→C′(R) =
max(0, VC(R) −VC′(R))

̵h
(11)

is the frequency of the emitted radiation and DCC ′ (R) is the transi-
tion dipole moment. c, ̵h, and �0 are the speed of light, the reduced
Planck constant, and the permittivity of free space, respectively. The
statistical weight factor for the approach in the diatomic state with
orbital electronic angular momentum, projected on the molecular
axis, Λ, and spin quantum number, S, is given by31

PΛS =
(2S + 1)(2 − δ0,Λ)

(2LA + 1)(2SA + 1)(2LB + 1)(2SB + 1)
, (12)

where LA, SA, LB, and SB are the electronic orbital angular momen-
tum and spin quantum numbers of atoms A and B, respectively. The
statistical factors PΛS for the reactions we consider in this work are
given in Refs. 16–18.

B. Resonant BW rate constants
Breit-Wigner (BW) theory32,33 provides a method to compute a

resonance mediated rate constant. The BW radiative association rate
constant for the formation of diatomic molecules is given by5,19

kC→C′(T) =
PΛS
̵hQT
∑

vj
(2j + 1)

e−βEvjC

1/Γtun
vjC + 1/Γrad

vjC→C′
. (13)
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The quasibound states have vibrational and rotational quantum
numbers v and j, and energy levels EvjC. Each quasibound state has
a width, Γtun

vjC, for tunneling to the continuum and a width Γrad
vjC→C′

for radiative decay to the final molecular state C′. The translational
partition function is defined by QT = (2πµ/βh2

)
3/2, where µ is the

reduced mass of the pair AB.
In Eq. (13), it is assumed that each quasibound state is pop-

ulated and depopulated through tunneling only. If there is a com-
peting mechanism Γfast

vjC that is much faster than the tunneling rate,
then the BW formula (13) may be modified by the replacement
Γtun
vjC → Γfast

vjC. If the condition Γfast
vjC ≫ Γrad

vjC→C′ also holds, then
Eq. (13) yields the limiting rate constant

kC→C′(T) =
PΛS
̵hQT
∑

vj
(2j + 1)e−βEvjCΓrad

vjC→C′ (14)

which is equivalent to the resonant part of the LTE formula
described in Sec. II C if Γrad

vjC→C′ is computed by adding the partial
widths for all transitions to truly bound states on C′. The rate con-
stants (13) and (14) should provide good estimates for the lower
and upper bounds of the phenomenological rate constant. In the
SQKT described in Sec. II C, radiative transitions to lower-lying
quasibound states are included in the calculation of the density of
unbound states but not in the final sum over bound states.

C. SQKT rate constants
The Sturmian quantum kinetic theory (SQKT) described pre-

viously9–12 uses square-integrable (L2) basis sets to compute the rate
constants. In this approach, the usual thermal velocity average is
replaced by the density operator

ρ̂f = Q−1
T ∑

f
gf e−βEf

∣f ⟩⟨f ∣, (15)

where the discrete sum over “free” states is obtained by diagonaliz-
ing the noninteracting Hamiltonian in the L2-basis. Here, Ef is the
energy eigenvalue and gf = (2jf + 1) is the degeneracy of the free
state f = {vf , jf } represented by vibrational and rotational quantum
numbers. The length scale and number of Sturmian basis functions
should be sufficient9 to ensure Tr(ρ̂f ) = 1. The density operator for
the unbound states of the interacting system may be written as

ρ̂u = Q−1
T ∑

u
cu gu e−βEu

∣u⟩⟨u∣, (16)

where u = {vu, ju} represents a positive energy L2 eigenstate of an
entrance Hamiltonian in Eqs. (2)–(7) with degeneracy gu = gf PΛS.
The relative population coefficient cu may be computed from the
steady-state solution of a Sturmian master equation that includes all
relevant kinetic pathways. The expression of the RA rate constant
obtained using the density operator (16) takes the form

kC→C′(T) =
PΛS
̵hQT
∑

b,u
cu (2ju + 1) e−βEu Γrad

u→b, (17)

where Γrad
u→b is the matrix element for spontaneous emission to a

bound state b = {vb, jb} of the exit channel. For a closed system
at constant T, it is easy to show that cu = 1 for all states. This has
been referred to in Refs. 9–14 as the LTE limit. When the system

exchanges energy with its surroundings, such as the exiting photons
produced by RA, the population of resonant unbound states may be
nonthermal, and the master equation should be used to compute the
NLTE coefficients. If there are no excitation mechanisms available
to the system, the steady-state solution of the master equation yields

cu =
Γtun

u

Γtun
u + Γrad

u
, (18)

where Γrad
u is computed by summing over all possible decay channels.

This was referred to in Refs. 13 and 14 as the NLTE-ZDL solu-
tion. The NLTE-ZDL and LTE rate constants appear very similar
to the BW formulas (13) and (14). We note, however, that the sum
over unbound states in Eq. (17) includes both resonant and nonres-
onant states, so there is no need to supplement this formula with
a semiclassical or classical calculation of the direct contribution. It
is also worth noting that Γrad

u includes transitions to lower-energy
unbound states, whereas Γrad

u→b in the rate formula (17) only includes
transitions to bound states.

III. RESULTS
We have computed radiative association rate constants for the

formation of three different diatomic molecules CO, CN, and SiN
through the six reactions (2)–(7). Reactions (2)–(4) are treated using
the same potential and dipole data as in Ref. 16, reaction (5) with
the ab initio potential and dipole data from Ref. 8, and reactions
(6) and (7) with the same data as in Ref. 18. The direct contributions
are computed with semiclassical (SC) and classical (CL) formulas as
described, for example, in Refs. 18 and 20, respectively. The numeri-
cal implementation of the simplified SC formula, which is described
in Sec. II A, is done as described in Ref. 23. The resonance param-
eters needed for the BW formulas are computed with LEVEL.

34 The
LTE and NLTE-ZDL rate constants are computed using the SQKT
formulation described in Sec. II C.

Figure 2 shows the rate constant for radiative association of CO
through reaction (2). This reaction has a barrier, so the conventional

FIG. 2. Radiative association rate constants for the formation of CO through reac-
tion (2). The rate constants were computed using the simplified SC, SC + BW, and
SQKT methods in the two thermodynamic limits LTE and NLTE-ZDL.
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treatment of resonances results in a rather small rate constant at low
temperatures, which grows fast with increasing temperature. The
LTE limit yields a larger rate constant, which is weakly decreasing
with increasing temperature. From a few hundred Kelvins and up,
there is good agreement between the simplified SC curve and the
SC + BW and SQKT curves in the LTE limit. At the lowest temper-
atures, the simplified SC rate constant departs from the other two
curves due to details of the resonances which are accounted for in
the quantum treatments. Good agreement is also seen between the
two NLTE-ZDL curves, especially at the higher temperatures. There
is a difference at the lowest temperatures, which is evidently due to
uncertainties in the SQKT calculation of the tunneling widths for
the low energy resonances of this reaction that are supported by a
shallow long-range well that lies outside of the barrier.

Figure 3 shows CO production through reaction (3). Also in
this case, there is perfect agreement between the simplified SC treat-
ment and LTE at a few hundred Kelvins and above. For this reaction,
it is particularly difficult to obtain parameters for the most narrow
resonances using a grid-based method such as LEVEL. This is due to
features of the 21Σ+ potential that are described in Ref. 16. For this
reason, we have not been able to obtain a reliable SC + BW result
for this reaction in the LTE limit. For NLTE-ZDL, the SC + BW rate
constant is underestimated at the lowest temperatures for the same
reason. The SQKT and SC + BW results agree reasonably well from
a few hundred Kelvins and above. Note that for this reaction, the
influence of the resonances is very small above 2000 K, independent
of which kinetic model is used. Thus, all four curves coincide above
roughly 3000 K.

In the supplementary material, we repeat the LTE calculations
shown in Figs. 2 and 3 for the 13C isotope. The increased mass has no
effect on the simplified SC result; however, it compresses and shifts
the eigenvalues of the quantum calculations toward lower energies.
For the A1Π → X1Σ+ transition, there are a large number of bound
and quasibound states in the entrance channel, so the shifted spec-
trum brings the LTE rate constant into better agreement with the
simplified SC curve. For the 21Σ+

→ X1Σ+ transition, there are a
small number of quasibound states in the entrance channel. The

FIG. 3. As in Fig. 2 but for reaction (3). The LTE result using the SC + BW formula
is not included for this reaction (see explanation in the text).

FIG. 4. Radiative association rate constants for the formation of CO through reac-
tion (4). In this case, the direct contribution in the results shown with dashed lines
is computed with the classical (CL) formula as explained in Ref. 20.

increased reduced mass shifts the lowest energy quasibound state
for 12CO into a bound state for 13CO. Consequently, the LTE rate
constant for 13CO drops well below the simplified SC value at low
temperature.

Reaction (4) takes place in absence of electronic transitions
due to the permanent dipole moment of CO. This has two main
consequences. First, the rate constants are typically 3–4 orders of
magnitude smaller than for reactions where electronic transitions
take place.17 Second, the semiclassical formulation is not applicable.
Figure 4 shows the corresponding computed rate constants with the
remaining methods. The agreement between CL + BW and SQKT is
essentially perfect for both LTE and NLTE-ZDL over the whole tem-
perature interval (10 K–10 000 K). This reaction is barrier free, which
results in a weakly increasing NLTE-ZDL rate constant vs tempera-
ture and a decreasing LTE rate constant. From 1000 K and up, the
rate constants decrease rapidly as radiative quenching is favored at
the cost of radiative association. This phenomenon has been seen
previously, e.g., in radiative association of SiO12 and HF.22

FIG. 5. As in Fig. 2 but for the formation of CN through reaction (5).
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FIG. 6. As in Fig. 2 but for the formation of SiN through reaction (6).

In Fig. 5, the rate constants for CN formation through reac-
tion (5) are displayed. This reaction is barrier free, and the behavior
of the rate constants is qualitatively similar to that of reaction (4);
however, the rate constants for reaction (5) are at least three orders
of magnitude larger due to the (Franck-Condon type) integral in
the dipole matrix element, which is larger when there is a change
in the electronic state.4 Again, the agreement of the simplified SC,
SC + BW, and SQKT treatments is nearly perfect for LTE, apart from
some small deviation below 20 K. For NLTE-ZDL, the SQKT and
SC + BW results are in excellent agreement over the whole tempera-
ture interval.

For radiative association through transitions between two elec-
tronic molecular states, it is well known that transitions from an
upper to a lower potential energy are preferred, rather than from a
lower to an upper.21 For SiN, the potential curves of the two molecu-
lar states that are involved in reactions (6) and (7) cross at an atomic
separation of about 3.3 bohrs; outside that distance, the X2Σ+ state
has a larger potential energy than the A2Π state. Since this cross-
ing is located in the strong interaction region, both reactions (6)
and (7) contribute significantly to the total SiN rate constant. In
Figs. 6 and 7, the rate constants are displayed, and again, we see

FIG. 7. As in Fig. 2 but for the formation of SiN through reaction (7).

agreement between the different methodologies in the two ther-
modynamic limits. Because the A2Π potential supports more low
energy quasibound states than the X2Σ+ potential, the agreement
between the simplified SC rate constant and the LTE result is better
at low temperatures for reaction (6) than for reaction (7).

IV. CONCLUSION
In the present work, we have compared several methods for

computation of RA rate constants. Because environmental condi-
tions can influence the resonance contribution to molecule forma-
tion, we have computed RA rate constants for two limits which
provide upper and lower bounds for the formation of three diatomic
molecules, CO, CN, and SiN. The dominant transitions have been
considered in each case. We have verified numerically that the sim-
plified SC method provides an excellent approximation in the LTE
limit when the potential energy curve of the entrance channel sup-
ports a large number of quasibound states. For the molecular sys-
tems considered in the present work, the simplified SC method
yields near-perfect agreement with the quantum calculations above
a temperature of about 100 K.

The good agreement between the simplified SC and LTE rate
constants found in the present work mirrors the agreement found
previously13 for the standard SC and NLTE-ZDL rate constants
computed by SQKT and perturbation theory with a coarsely-spaced
energy grid (the grid resolved broad resonances but not narrow ones
in order to achieve the agreement). It is also shown here that the
standard SC result may be used together with the usual BW for-
mula in the appropriate limit to get both the NLTE-ZDL and LTE
rate constants. Calculating the total rate constant by adding the
resonance contribution, computed with the BW formula using the
appropriate mechanism, to a semiclassical or classical result, there-
fore, is essentially equivalent to the SQKT result in both thermo-
dynamic limits, apart from the minor differences in accounting for
downward transitions to quasibound states.

In an interstellar environment where a fast mechanism other
than tunneling from the continuum contributes to the population of
quasibound states, the same fast mechanism would also contribute
to the population of true bound states and perhaps be the domi-
nant mechanism for molecule formation. The LTE result, therefore,
provides a useful estimate of the crossover from RA to the domi-
nant molecule formation mechanism (e.g., TBR). If the critical den-
sity for the crossover is known, then the TBR rate coefficient may
be obtained from the RA rate constant and used at higher densi-
ties where RA is unimportant.13 Therefore, it is useful to compute
RA rate constants in both thermodynamic limits. Standard quan-
tum rate constants for the present systems have been reported pre-
viously.16–18 These rate constants are appropriate for very low gas
densities and weak radiation fields where the NLTE-ZDL assump-
tion applies. In the supplementary material, we provide new data
for the present systems that may be used in the LTE limit. Further
studies of environmental influences on competing types of chemical
reactions would also be desirable.

SUPPLEMENTARY MATERIAL

Figure 1 of the supplementary material shows the LTE rate con-
stant for reactions (2) and (3) for the formation of the different
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isotopes 12CO and 13CO. It illustrates that if there is a high den-
sity of quasibound states, which is the case for reaction (2), then
the rate constant is not sensitive to isotopes’ effects. In reaction (3),
only a few quasibound states contribute to the low temperature rate
constant and a small shift of the quasibound energy levels, which
is due to the small change in reduced mass, has a big effect. The
rate constant computed with the simplified SC method is isotope
independent since Eq. (8) does not contain the reduced mass. All cal-
culations involving carbon in this work, other than that presented in
Fig. 1 of the supplementary material, are for 12C even though it is not
explicitly stated. Tables I–VI of the supplementary material contain
LTE rate constants for all six reactions (2)–(7).
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