Collisional properties of an ultracold K-Rb mixture

G. Modugno, G. Ferrari, M. Inguscio, F. Riboli, G. Roati, A. Simoni

European Laboratory for Nonlinear Spectroscopy (LENS)
Largo Enrico Fermi 2, 50125 Firenze, Italy

We investigate the interspecies collisional properties of an ultracold 41K-87Rb mixture, stored in a magnetic trap. The potassium sample is cooled by means of thermal contact with the evaporatively cooled rubidium [1]. We determine magnitude and sign of the 41K-87Rb triplet scattering length by investigating the behavior of the cross-section for elastic collisions with temperature, in samples composed by atoms in the $|F = 2, M_F = 2\rangle$ state. In particular, we obtain a positive scattering length: $a_t=163^{+72}_{-12} \ a_0$. We also measure the singlet scattering length from inelastic collisional rates in a mixture of $|2, 2\rangle$ and $|2, 1\rangle$ states. In addition, we present the triplet scattering lengths for all the K-Rb isotope pairs, as determined through mass scaling, and we discuss the implications for creating other ultracold K-Rb mixtures.

Our determination of a repulsive 41K-87Rb triplet interaction is confirmed by the observation of a stable binary Bose-Einstein condensate. We will report on further collisional investigation in progress on the binary condensate.