An ultra cold gas of metastable helium atoms:
Bose Einstein Condensation and cold collision studies

Michèle Leduc, Franck Pereira dos Santos, Jérémie Léonard, Erwan Jahier, Sylvain Schwartz,
Claude Cohen Tannoudji

Laboratoire Kastler Brossel, Département de Physique de l’Ecole Normale Supérieure,
24 rue Lhomond, 75231 Paris cedex 05, e-mail: leduc@lkb.ens.fr

A BEC of 4He atoms in the 2S_1 metastable state was first observed in 2001 [1], [2]. We shall
recall the experimental steps that led to the BEC transition at 5µK at ENS, as well as the
onlytical detection of the cold cloud. We shall discuss the optimization of the evaporative
cooling ramp which allows to bring the atomic temperature from 1 mK to 1 µK in 8s with a
gain of 10^6 in phase space density. Quantitative measurements of the rates of elastic and
inelastic collisions both above and below the transition will be given. Evidence for the strong
inhibition of the Penning ionizing collisions will be presented. A value of the scattering length
between two metastable atoms will be derived.

We shall also present recent studies of the elastic collisions in the gas above the transition. We
magnetically excite a quadrupolar mode and measure both the damping and the frequency
shift of the mode at different temperatures and different collision rates along the evaporative
cooling ramp. Preliminary results indicate that one approaches the hydrodynamical regime
(more details will be given in the poster of J.Léonard).

A more prospective discussion will follow, prepared with Allard Mosk and related to the
photoassociation of metastable helium atoms [3] from a magnetic trap, the possibility of
changing the scattering length with light [4] and to perform Raman photoassociation [5].