Making cold sodium molecules

Photoassociation of sodium in a Bose-Einstein condensate

Production of molecules in a MOT and spectroscopy of the lowest triplet state of \(\text{Na}_2 \)

ONR, NASA
Production of Na$_2$ molecules in a MOT and spectroscopy of the lowest triplet state of Na$_2$

L. de Araujo,
J. Weinstein
S. Gensemer (Bates),
F. Fatemi (NRL),
K. Jones (Williams),
P.D. Lett,
E. Tiesinga
EXPERIMENTAL OVERVIEW

magneto-optical trap ("MOT")
\[n \sim 10^{10} \text{ cm}^{-3} \]

"dark spot" MOT*
\[n \sim 10^{11} \text{ cm}^{-3} \]
\[T \sim 500 \mu \text{K} \]

◊ **Alternate trap and probe lasers at \(\sim 10 \mu \text{s intervals} \)**

Multi-color spectroscopy of the (triplet) ground state of Na$_2$

ionization vs. trap loss
similar work in Li, K, Rb, Cs
Autler-Townes splitting of lines

Ion signal (arb. units)

Frequency of laser L1 (GHz)

|e1> and |g> dressed by L2

L2 present, L1 scanned

L2 blocked, L1 scanned

|e1> and |g>

L1

|e1>

L3

|g>

L3

L2

|g>
bound-state resonances

photoassociation resonances

\[0^+ (S + P_{1/2}) \]

\[e_1 \]

\[|e_1> \]

bound-state resonances

photoassociation resonances

\[0^+ (S + P_{1/2}) \]

\[a \bar{3}Σ_u^+ \]

Energy (GHz)

incoming flux

\[f_1 + f_2 \]

\[v = 15 \]

\[4s \]

\[1s/3s \]

\[2s \]
theory: E. Tiesinga
Lineshapes vs. power

\(|e_1>: 16945.94; \ 0_g, J=0 (v = 119)\\
|e_2>: 16936.44; \ 0_g, J=0 (v = 114)\)
Lineshape issues:

one color

Two color

lineshape formula:
J. Bohn and P. Julienne,
PRA 54, 4637 (1996);
60, 414 (1999)
triplet potential(s) $\sim 160 \text{ cm}^{-1}$ deep

strongly mixed with singlet potentials near dissociation ($v = 14, 15$)

vibrational, rotational, hyperfine and spin-dipole - spin-dipole structure
Fixed Total Energy

Doubly-excited ionizing states mapped out

Intermediate states - experiment and theory

0_g^- near dissociation

$^3\Sigma_g^+ 500 \text{ cm}^{-1}$ deep in well

accurate theoretical description gives us quantum numbers on intermediate lines
Binding Energy (GHz)

(uncalibrated)
Rough plot of $(E - E_v)$ for all lines

- $l = 0$
- $l = 1$
- $l = 2$
- $l = 3$
- $v = 6$
- $v = 14$

Legend:
- + theory
- □ calibrated data
- ○ rough data
spin-spin dipole/
second order spin-orbit
on top of hyperfine interactions
Spin-spin dipole effect: "relativistic effect"
-electron spin-dipole/electron spin-dipole interaction; R^{-3} behavior
-second order spin-orbit interaction has terms of same form but they are small in Na_2

```
<table>
<thead>
<tr>
<th>$l$</th>
<th>$F_{\text{tot}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1 5 2 3</td>
</tr>
<tr>
<td>2</td>
<td>3 2 4</td>
</tr>
</tbody>
</table>
```
E_v deviations from present best potential

$\text{Na}_2 a^3\Sigma_u^+$ potential from E. Tiemann, Hannover
transitions to $0_g^{-} (S+P_{1/2})$ and "a" states

- For $v=88$ (-164.685 cm$^{-1}$)
 - Ionizer tuning: 17067.62 cm$^{-1}$
 - 586 nm
 - Energy is -0.2 cm$^{-1}$ from that found from Eite's table (16791.52 cm$^{-1}$)

- For $v=14$ (-3389 cm$^{-1}$)
 - Ionizer tuning: 16793.42 cm$^{-1}$
 - 595.5 nm
 - Energy is -0.2 cm$^{-1}$ from that found from Eite's table (16791.52 cm$^{-1}$)

- For $v=13$ (-1.126 cm$^{-1}$)
 - Ionizer tuning: 16791.32 cm$^{-1}$
 - 586 nm
 - Energy is -0.2 cm$^{-1}$ from that found from Eite's table (16791.52 cm$^{-1}$)

- For $v=5$ (-64.19 cm$^{-1}$)
 - Ionizer tuning: 13631 cm$^{-1}$
 - 733.6 nm
 - Energy is -0.2 cm$^{-1}$ from that found from Eite's table (16791.52 cm$^{-1}$)

- For $v=0$ (-161.48 cm$^{-1}$)
 - Ionizer tuning: 13568 cm$^{-1}$
 - 737.0 nm
 - Energy is -0.2 cm$^{-1}$ from that found from Eite's table (16791.52 cm$^{-1}$)

- The "7-laser experiment"
Summary

• Measured photoassociation rates in a BEC
 We can convert a BEC to molecules in a few microseconds!

• Results agree with photoassociation theory
 Simple classical depletion arguments fail. Nothing is fundamentally special about photoassociation in a BEC

• The transition is not yet saturated
 We are not at the unitarity limit.

• We have observed a number of bound states of the lowest triplet potential of Na$_2$, comprising vibrational, rotational, hyperfine and spin-spin dipole structure.

• We can accurately determine the quantum numbers of these states

• We should achieve 10 - 30 MHz precision.
Photoassociation of sodium in a Bose-Einstein condensate

C. McKenzie,
J. Hecker Denschlag (Innsbruck),
H. Häffner (Innsbruck),
A. Browaeys,
L. deAraujo,
F. Fatemi (NRL),
K. Jones (Williams),
J. Simsarian (Lucent),
D. Cho (Korea),
A. Simoni (Firenze),
E. Tiesinga,
P. Julienne,
K. Helmerson,
P. Lett,
S. Rolston,
W. Phillips
Motivation, questions and ideas

- Is photoassociation in a BEC special?

 Or just a colder and more dense sample…

 (with lineshapes, widths, lightshifts adjusted accordingly...?)

- How fast can you convert an atomic BEC into molecules? What timescales are there?

- Can we saturate the molecular transition?
How fast can you make molecules in a BEC?

- Excitation removes pairs of atoms

Do you have to wait for new atoms to move to fill in the "holes" and create new pairs?

\[v \sim \frac{\hbar}{mR_{TF}} \sim 0.5 \text{ mm/s} \]

Characteristic time: \[\tau \sim n^{-1/3}/v \sim 250 \mu s \]
Photoassociate all pairs of atoms at R_c

for Thomas-Fermi distribution

and $R_c = 2 \text{ nm}, \quad \tau \sim 10 \mu\text{s}$
The sodium Bose condensate

Laser cool

Magnetically trap, Evaporatively cool

....BEC

Density

macroscopic wave function

every 30 seconds
4 x 10^6 atoms
Thomas-Fermi diameter: 21 x 30 x 42 μm
Trap frequency 272, 192, 136 Hz
Density ~5x 10^{14} cm^{-3}
Phase Contrast Imaging

Photoassociation leads to trap loss

Measure remaining number of atoms

Use phase contrast imaging to determine initial number of atoms in condensate

Reduce noise due to shot-to-shot fluctuations in the initial number

Phase plate is a 2 pixel liquid crystal retarder

\[\phi = 25 \text{ mm} \]

\[\phi = 500 \mu\text{m} \]

5 \mu m lead

50 msec between images; limited by camera readout time
Level scheme

\[F = 1, \ m_F = -1 \]

\[16913.4 \text{ cm}^{-1} \]

\((40 \text{ cm}^{-1} \text{ red from } 3S + 3P_{1/2}) \)

\(\sim 8 \text{ ns lifetime} \)
The experimental set up

-1200 GHz

-15 MHz

Focused to 100 µm

phase contrast & absorption imaging

BEC

MOT

Dye laser 0.5W
Large light shift!

due to d-wave shape resonance
the light shift

\[\Delta E = \int dE' \frac{\Omega(E')}{E - E'} \]

Weighted density (\(\Omega \)) of red states is much greater than weighted density of blue states

\(\Rightarrow \) Light shift is negative
Line Shape

\[\nu = 16953 \text{ cm}^{-1} \]
\[\tau = 100 \mu\text{s} \]
\[I = 140 \text{ W/cm}^2 \]

Predicted FWHM = 19 MHz
Loss vs. Pulse Length

\[\frac{dn(\vec{r}, t)}{dt} = -K n^2(\vec{r}, t), \quad N(t) = \int n(\vec{r}, t)d^3r \]

\[\frac{N(\tau)}{N(0)} = \frac{15}{2} \tau^{-5/2} \left[\tau^{1/2} + \frac{1}{3} \tau^{3/2} - (1 + \tau)^{1/2} \tanh^{-1} \left(\sqrt{\frac{\tau}{1 + \tau}} \right) \right] \]

\[\tau = Kn_0 t \]

\[K = 5.3 \times 10^{-11} \text{ cm}^3\text{s}^{-1} @ 150 \text{ W/cm}^2 \]
Loss vs. Pulse Energy

No signs of saturation
Why so fast?

Quantum mechanics

\[n^{-1/3} \sim 3000 \ a_0 \]

Our result: \[\sigma \sim (18000 \ a_0)^2 \]

Unitarity Limit \[\sigma \sim (900000 \ a_0)^2 \]

- even though \(R_c = 40 \ a_0 \)
Semi-classical 2-body theory:

\[\text{flux} = 4\pi R_c^2 v \]

\[R \sim R_C \]

\[K_{\text{max}} = \sigma_{\text{max}} \bar{v} = \pi R_c^2 \bar{v} \]

\[\bar{v} \sim \frac{h}{mR_{\text{Thomas-Fermi}}} \sim 0.5 \text{ mm/s} \]

For \(A^1\Sigma_u^+, v=135 \) \(E_b \sim 40 \text{ cm}^{-1} \)
\(R_C \sim 2 \text{ nm} \)

\[K_{\text{max}} = 6.3 \times 10^{-16} \text{ cm}^3/\text{s} \text{ independent of intensity} \]

\[K_{\text{measured}} = 5 \times 10^{-11} \text{ cm}^3/\text{s} \text{ at 150 W/cm}^2 \]
Should this bother us?

"K_{max}" classical $= 6 \times 10^{-16}$ cm3/s

$K_{\text{measured}} = 5 \times 10^{-11}$ cm3/s at 150 W/cm2

$K_{\text{unitarity}} = \frac{\hbar \lambda}{2m} = 8 \times 10^{-8}$ cm3/s

$K_{\text{scattering theory}} = \frac{4\hbar}{mk} |T|^2 \approx \frac{4\hbar}{mk} \frac{\Gamma}{\gamma_0}$

$= 6 \times 10^{-11}$ cm3/s at 150 W/cm2
$K_{J-M} = \frac{hn^{-1/3}}{m} = 3.4 \times 10^{-8} \text{ cm}^3/\text{s} \quad \text{at peak } n$

$= 3.7 \times 10^{-8} \text{ cm}^3/\text{s} \quad \text{averaged over Thomas-Fermi distribution}$

-problems predicting correct limits at low n