Photoassociation of heteronuclear lithium

Ulrike Schlöder, Christian Silber, Thomas Deuschle, and Claus Zimmermann

Physikalishes Institut der Universität Tübingen,
Auf der Morgenstelle 14, 72076 Tübingen, Germany

Heteronuclear photoassociation
- various applications: high-resolution spectroscopy
- investigation of long-range interactions
- determination of scattering lengths
- production of cold molecules

Homonuclear photoassociation
- various cases: determination of internuclear distances
- collisional cooling of cold molecules
- determination of dipole-dipole interactions
- fermionic and bosonic isotope mixing

System \(^6\text{Li}^7\text{Li} \)

Experimental setup
- detection of 39Ar, Zeeman background gas pressure of \(3 \times 10^{-3} \) mbar
- two independent diode-laser systems
- \(^6\text{Li}^7\text{Li} \), large-volume high-fine-structure laser system
- \(^7\text{Li} \), large volume, high-fine-structure laser system
- cold, slow molecular beam at a mean kinetic energy of 125 kHz

Heteronuclear Spectra

Evidence
- observation of isotopes
- observation of \(^{11} \text{Li}^6\text{Li} \), \(^{12} \text{Li}^6\text{Li} \), \(^{13} \text{Li}^6\text{Li} \)

Hyperfine-resolved singlet spectrum
- singlet series observed down to \(v=64 \) (3612 GHz)
- triplet series observed down to \(v=58 \) (2411 GHz)

Singlet and triplet series
- position of lines predictable with mass-scaling
- applied to homonuclear spectra

Saturation effects

Model
- photoassociation rate
- saturation in signal
- light shift and line broadening

Saturation in signal
- maximum photoassociation rate
- light shift
- linewidth

Light shift and line broadening
- light shift vs. intensity
- linewidth vs. intensity

System \(^6\text{Li}^7\text{Li} \)

Experimental setup