Prediction and measurement of the speed-dependent throughput of an octupole filter including nonadiabatic effects: Application to Cs, Li, Rb and S$_2$

E. Abraham, B.R Furneaux, C. McRaven, N. Shafer-Ray, R.Waskowsky
Department of Physics and Astronomy,
University of Oklahoma, Norman, USA

E. I. Dashevskaya, E. E. Nikitin,
Department of Chemistry,
Technion, Haifa, Israel

J. Alnis, M. Auzinsh,
Department of Physics,
University of Latvia, Riga, Latvia

We have investigated the properties of an octupole filter for the production of cold atoms and molecules. The apparatus is predicted to produce a beam of particles at about $T_{\text{eff}} = 1.5$K. We developed a sensitive probe of slow moving Rb-atoms and observed a Rydberg atom time of flight spectrum corresponding to $T_{\text{exp}} = 3.5$K. The difference in temperature is consistent with the uncertainty in the geometry of the Rb source at the entrance to the filter. The transmission of the device is a few parts per million. We also have shown that nonadiabatic motion of particles (with respect to Zeeman transitions) plays a significant role only for the case that the inner diameter of the guide is small. The estimated flux of 85Rb through the guide is about 10^8 atoms s$^{-1}$.