Progress in trapping rubidium molecules

A. Fioretti, M. Mazzoni* and C. Gabbanini
Istituto per i Processi Chimico-Fisici del C.N.R.
Via G. Moruzzi 1, I-56124 Pisa

We have recently observed the formation of ultracold rubidium molecules in the triplet ground state at a temperature of about 90 µK inside a Rb MOT [1]. The most efficient formation has been found to go through photoassociation to the excited \(^0\)\(g \) \((P_{3/2}) \) state and successive radiative decay to the \(^3\Sigma_u^+ \) ground state [2]. In this way up to \(10^4 \) mol/s are produced. These molecules remain in the MOT region for nearly 10 ms before falling due to gravity and to the residual velocity; this actually limits any possible experiment with them. To increase the storage timescale, trapping of the molecules must be obtained.

We are setting up an optical dipolar trap using a CO\(_2\) laser to confine rubidium molecules. This kind of trap, known as QUEST (quasi-electrostatic trap), has already been successful in trapping cesium molecules [3]. We shall describe the status of our experiment.

*Istituto di Elettronica Quantistica del C.N.R., Via Panciatichi 56/30, I-50127 Firenze